Impact of Transport Duration on Integrated Stress Biomarkers and Predictive Modelling of Dark, Firm, Dry (DFD) Meat Incidence in Awassi Lambs
DOI:
https://doi.org/10.48165/jms.2025.20.01.11Keywords:
Awassi lambs, transport stress, oxidative stress, acute phase proteins, DFD meat, ROC analysis, predictive modellingAbstract
Background: Transport stress adversely affects animal welfare and meat quality in livestock. However, no previous study has simultaneously integrated physiological, oxidative, inflammatory, and acute phase biomarkers with multivariate modelling to predict dark, firm, dry (DFD) meat risk in Awassi lambs under commercial transport conditions. Objective: This study aimed to evaluate the effects of transport duration on integrated stress biomarkers, establish predictive cut-off values using ROC analysis, and develop a practical Transport Stress Score (TSS) for DFD prediction. Methods: Ninety-six male Awassi lambs (8–10 months, 42 ± 3 kg) were allocated to four groups (n = 24): Control (C), Short Transport (ST, 1 h), Medium Transport (MT, 3 h), and Long Transport (LT, 6 h). Blood and muscle samples were analyzed for cortisol, glucose, lactate, creatine kinase (CK), neutrophil/lymphocyte (N/L) ratio, haptoglobin (Hp), serum amyloid A (SAA), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), malondialdehyde (MDA), total antioxidant capacity (TAC), superoxide dismutase (SOD), and glutathione peroxidase (GPx). Meat quality was assessed on longissimus dorsi muscle. ROC analysis, PCA, and logistic regression were performed. Results: Prolonged transport markedly elevated (P < 0.05) cortisol (15.82 → 48.65 ng/mL), MDA (1.85 → 4.92 nmol/mL), IL-6 (42.5 → 128.6 pg/mL), and SAA (8.45 → 38.72 μg/mL), while depleting antioxidant defenses. DFD incidence reached 54.2% in LT group. ROC analysis revealed SAA as the strongest predictor (AUC = 0.91) with optimal cut-off of 25.4 μg/ mL (sensitivity = 88.5%, specificity = 84.2%). The proposed Transport Stress Score achieved 89.6% accuracy for DFD prediction. Conclusion: This study provides the first integrated biomarker panel with validated cut-off values and a practical scoring system for DFD risk assessment in Awassi lambs. Transport should be limited to < 3 hours to maintain optimal meat quality.Downloads
References
Alam, M., Hasanuzzaman, M., Hassan, M. M., Rakib, T. M., Hossain, M. E., Rashid, M. H., Sayeed, M. A., Philips, L. B., & Hoque, M. A. (2018). Assessment of transport stress on cattle travelling a long distance (≈648 km). Veterinary Record Open, 5, e000248. https://doi.org/10.1136/vetreco-2018-000248
Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239, 70–76. https://doi.org/10.1006/abio.1996.0292
Dou, L., Liu, C., Yang, Z., Su, R., Chen, X., Hou, Y., Hu, G., Yao, D., Zhao, L., Su, L., & Jin, Y. (2022). Effects of oxidative stability variation on lamb meat quality and flavor during postmortem aging. Journal of Food Science, 87, 2578–2594. https://doi.org/10.1111/1750-3841.16138
Erasmus, S. W., Sohaib, M., Revilla, I., Vivar-Quintana, A. M., & Giancoli, S. J. (2024). Markers for meat provenance and authenticity with an account of its defining factors and quality characteristics. Journal of the Science of Food and Agriculture, 104, 7027–7084. https://doi.org/10.1002/jsfa.13690
Grau, R., & Hamm, R. (1953). Eine einfache Methode zur Bestimmung der Wasserbindung im Muskel. Naturwissenschaften, 40, 29–30.
He, T., Ma, J., Mahfuz, S., Zheng, Y., Long, S., Wang, J., Wu, D., & Piao, X. (2022). Dietary live yeast supplementation alleviates transport-stress-impaired meat quality of broilers through maintaining muscle energy metabolism and antioxidant status. Journal of the Science of Food and Agriculture, 102, 4086–4096. https://doi.org/10.1002/jsfa.11758
Hou, Y., Liu, C., Su, L., Zhao, L., Yang, Z., Bai, Y., Dou, L., Yao, D., & Jin, Y. (2023). Dietary linseed supplementation improves meat quality and flavor of sheep by altering muscle fiber characteristics and antioxidant capacity. Animal Science Journal, 94, e13801. https://doi.org/10.1111/asj.13801
Kang, H., Lee, I. K., Piao, M., Kwak, C., Gu, M. J., Yun, C. H., Kim, H., Ahn, H., Kim, H., Kim, G., Kim, S., Ko, J., Ha, J. K., & Baik, M. (2016). Effects of road transportation on metabolic and immunological responses in Holstein heifers. Animal Science Journal, 88, 140–148. https://doi.org/10.1111/asj.12604
Miranda-de la Lama, G. C., Rivero, L., Chacón, G., Garcia-Belenguer, S., Villarroel, M., & Maria, G. A. (2012). Effect of the pre-slaughter logistic chain on some indicators of welfare in lambs. Livestock Science, 128, 52–59. https://doi.org/10.1016/j.livsci.2009.10.013
Nelis, J. L., Bose, U., Broadbent, J. A., Hughes, J., Sikes, A., Anderson, A., Caron, K., Schmoelzl, S., & Colgrave, M. L. (2022). Biomarkers and biosensors for the diagnosis of noncompliant pH, dark cutting beef predisposition, and welfare in cattle. Comprehensive Reviews in Food Science and Food Safety, 21, 2391–2432. https://doi.org/10.1111/1541-4337.12945
Othman, A., Goh, Y. M., Mohamed Mustapha, N., Raghazli, R., Kaka, U., Imlan, J. C., Abubakar, A. A., & Abdullah, R. (2021). Physiological and electroencephalographic changes in goats subjected to transportation, lairage, and slaughter. Animal Science Journal, 92, e13610. https://doi.org/10.1111/asj.13610
Placer, Z. A., Cushman, L. L., & Johnson, B. C. (1966). Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Analytical Biochemistry, 16, 359–364. https://doi.org/10.1016/0003-2697(66)90167-9
Pomorska-Mól, M., Podgórska, K., Czyżewska-Dors, E., Turlewicz-Podbielska, H., Gogulski, M., Włodarek, J., & Łukomska, A. (2020). Kinetics of single and dual simultaneous infection of pigs with swine influenza A virus and porcine reproductive and respiratory syndrome virus. Journal of Veterinary Internal Medicine, 34, 1903–1913. https://doi.org/10.1111/jvim.15837
Romero, M. H., Ibañez-Jurado, D. O., Sanchez, J. A., & Rabbani, I. (2024). The impact of the trailer microclimate on some physiological, behavioral, and meat pH of fattening pigs during short-duration journeys in tropical climate. Veterinary Medicine International, 2024, 4695363. https://doi.org/10.1155/2024/4695363
Salahuddin, M., Azad, M. A., Das, S. K., Hossain, M. M., Hasan, M. N., & Hiramatsu, K. (2018). Effect of posttransportation grazing on the physiological condition and meat quality traits of Black Bengal goats. Animal Science Journal, 90, 264–270. https://doi.org/10.1111/asj.13143
Seyedin, S. M., Mojtahedi, M., Farhangfar, S. H., & Ghavipanje, N. (2022). Partial substitution of alfalfa hay by Berberis vulgaris leaf modulated the growth performance, meat quality and antioxidant status of fattening lambs. Veterinary Medicine and Science, 8, 2605–2615. https://doi.org/10.1002/vms3.934
Xing, T., Gao, F., Tume, R. K., Zhou, G., & Xu, X. (2019). Stress effects on meat quality: A mechanistic perspective. Comprehensive Reviews in Food Science and Food Safety, 18, 380–401. https://doi.org/10.1111/1541-4337.12417

