Formulation and Iron Bioavailability in Complementary Foods Processed with Traditional Foodstuffs in Eastern of the Democratic Republic of Congo
DOI:
https://doi.org/10.48165/jfdr.2024.4.3.1Keywords:
Food processing, Anemia, Malnutrition, indigenous foodsAbstract
Consumption of low iron bioavailability foods is the main contributing factor of iron deficiency for young children, a major public health problem especially common in our low income African countries. This study aimed at utilizing traditional foodstuffs to develop nutrient dense and iron bioavailability complementary foods in eastern D.R. Congo. Nutrient and anti-nutrient content were carried out using appropriate methods. The complementary foods were formulated by extrusion cooking and ground into flour that could be reconstituted into porridge for child feeding as recommended by Codex alimentarius. In-vitro iron availability was measured as Fe (II) bioavailability obtained by a method combining in-vitro protein digestion and dialysis (IVPD-dialysis). Phytic acid content was done by HPLC analysis method of phytic acid with modifications. The foods were formulated to meet the Recommended Dietary Allowance (RDA) for 6 month olds. Three (3) formulated complementary foods (CF0221, CF0322 and CF0423) composed of four (4) selected traditional foodstuffs: non-germinated amaranth grain (Amaranthus cruentus), maize (Zea mays), termites (Macrotermes subhylanus) and dagaa fish (Rastreneobola argentea) result in this investigation. Complementary foods developed and precooked products obtained contained 914.5-1234.0 mg/100g phytic acid and <5% bioavailability of non-heme iron. Phytate/iron molar ratio was beyond the critical limits for all the foods. The foods contained up to 3.3% bioavailable iron after pepsin digestion and up to 2.5% bioavailable iron after pepsin + pancreatin digestion. This study provides evidence that eastern D.R. Congo has traditional foodstuffs which are nutrient dense and iron bioavailability content. Traditional grains studied have anti-nutrients and reducing them is necessary before processing to complementary foods. Germinating amaranth grain may reduce phytic acid further improving mineral bioavailability. Termite and dagaa fish can be utilized in processing nutrient dense and acceptable complementary foods. It is therefore recommended that both traditional animal and plant foods be exploited. Facilitation to commercialize and patent the process and products should be done to enable full exploitation.
Downloads
References
Akinnawo, O.O., Abatan, M.O., Ketiku, A. O. (2002). Toxicological study on the edible larva of Cirina forda (Westwood). African Journal of Biomedical Research, 5:43– 46. http://www.bioline.org.br/pdf?md02008
AOAC (1995). Association of Official Analytical Chemists. Official Methods of Analysis (1995), 16th ed. Arlintong, VA. http://lib3.dss.go.th/fulltext/scan_ebook/aoac_1995_ v78_n3.pdf
AOAC (1996). Association of Official Analytical Chemists. Official Methods of Analysis, 16th ed. Gaithersburg, Maryland. http://lib3.dss.go.th/fulltext/scan_ebook/ aoac_1995_v78_n3.pdf
Aubry, P. Gaüzère B-A. (2015). Anémies carentielles ou nutri tionnelles. Diplôme de médicine tropicale des pays de l’océan Indien. Medecine tropicale, 6 pp. http://medecin etropicale.free.fr
Ayieko, M.A. Oriaro, V. (2008). Consumption, indigenous knowledge and cultural values of lake flies species within the Lake Victoria region. African Journal of Environment and Technology, 2(10):282-286. http://www.academic
journals.org/AJest
Ayieko, M.A., Kinyuru, J.N., Ndong’a, M.F., Kenji G.M. (2012). Nutritional Value and Consumption of Black Ants (Carebara vidua Smith) from the Lake Victoria Region in Kenya. Advance Journal of Food Science and Technology,
4(1):39-45. https://maxwellsci.com/print/ajfst/v4-39-45. pdf
Bahizire, N.E. (2018). Anemia in rural area South Kivu: contri bution of malaria and iron deficiency. These de Doctorat en Sciences de la santé Publique (2017-2018), Universite libre de Bruxelles, Ecole de Sante Publique, Bruxelles. https:// doi.org/10.4269/ajtmh.17-0030
Becker, T., Wheeler, E.L., Lorenz, K., Stafford, A.E., Grosjean, O.K., Betschart, A.A. Saunders, R.M. (1981). A composi tional study of amaranth grain. Journal of Food Science, 46:1175-1180. https://doi.org/10.1111/j.1365-2621.1981. tb03018.x
Beutler, E. West, C. (2005). Hematologic differences between African-Americans and whites: the roles of iron déficiency and α-thalassemia on hemoglobin levels and mean corpus cular volum. Blood, 106:740-745. https://doi.org/10.1182/ blood-2005-02-0713
Bhandari, B., D’Arcy, B. Young, G. (2001). Flavour retention during high temperature short time extrucion cooking pro cess: a review. International Journal of Food Science and Technology, 36:453–461. https://doi.org/10.1046/j.1365- 2621.2001.00495.x
Bobonis, G. J., Miguel, E. & Puri-Sharma, C. (2006). Anemia and school participation. Journal of Human Resources, 41(4):692-721. https://doi.org/10.3368/jhr.XLI.4.692
Byavu, N., Henrard, C., Dubois, M. & Malaisse, F., (2000). Phytothérapide traditionnelle des bovins dans les élevages de la plaine de la Ruzizi. Biotechn. Agron. Soc. Environ., 4(3):135-156. https://popups.uliege.be/1780-4507/text/
v4n3/135.pdf
Camire, A. L. and Clydesdale, F. M. (1982). Analysis of phytic acid in foods by HPLC. Journal of food science, 47:575-578. https://doi.org/10.1111/j.1365-2621.1982.tb10126.x
Christensen, D. L., Orech, F. O., Mungai, M. N., Larsen, T., Friss, H. & Aagaard Hansen, J. (2006). Entomophagy among the luo of Kenya: A potential mineral source?. International Journal of Food Science and Nutrition, 57(3/4):198-203. https://doi.org/0.1080/09637480600738252
Codex Alimentarius (1991). Standard for Processed Cereal-Based Foods for Infants and Children, Codex Stan 74. FAO, Rome. https://www.ibfan.org/wp-content/uploads/2019/05/ STANDARD-FOR-PROCESSED-CEREAL-BASED-FOODS-FOR INFANTS-AND-YOUNG-CHILDREN.pdf
Colmenares, S. & Bressani, R. (1990). Effect of Germination on the Chemical Composition and Nutritive of Amaranth Grain. Cereal Chemistry, 67(6):519-522. https://www. cerealsgrains.org/publications/cc/backissues/1990/ Documents/67_519.pdf
Dewey, K. G. & Brown, K. H. (2003). Update on technical issues concerning complementary feeding of young children in developing countries and implications for intervention pro grams. Food and Nutrition Bulletin, 24:5-28. https://doi. org/10.1177/156482650302400102 Dewey K.G. (2005). Infant nutrition in developing countries: what works?. Lancet, 365:1832-1834. https://doi.org/10.1016/S0140- 6736(05)66427-6
Dijkhuizen, P. (2000). Processed complementary foods in the World Food Program. Food and Nutrition Bulletin, 21:62– 64. https://doi.org/10.1177/156482650002100110
Earl, R. & Woteki, C. E, éd. (1993). Iron deficiency anemia: rec ommended guidelines for the prevention, detection, and management among U.S. children and women of childbear ing age. Washington, DC: National Academy Press. https:// doi.org/10.17226/2251
EDS-RDC-Enquête Démographique et de Santé (2014). Deuxième enquête démographique et de santé en République démocratique du Congo (EDS-RDC II 2013- 2014); 2013–4. https://dhsprogram.com/pubs/pdf/FR300/ FR300.pdf
Egli, I., Davidsson, L., Zeder, C., Walczyk, T. & Hurrell, R. (2004). Dephytinization of a complementary foods based on wheat and soy increases zinc, but not copper apparent absorption in adults. Journal of Nutrition, 134:1077-1080. https://doi.
org/10.1093/jn/134.5.1077
FAO/WHO (2002). Joint FAO/WHO Expert Consultation. Vitamin and mineral requirements in human nutrition. World Health Organization, Geneva, Switzerland. https:// apps.who.int/iris/handle/10665/42716
FAO/WHO (2004). Joint FAO/WHO Expert Consultation. Human energy requirements. Food and Agriculture Organisation, Rome, Italy. https://www.fao.org/3/y5686e/ y5686e.pdf
Fellows (2000). Food Processing Technology: Principles and Practice. Pp. 177-182. Cambridge: Woodhead Publishing Ltd. https://www.elsevier.com/books/food-process ing-technology/fellows/978-0-08-100522-4
Garcia-Estepa, R. M., Guerra-Hernandez, E. and Garcia Villanova, B. (1999). Phytic acid content in milled cereal products and breads. Food Research International, 32:217- 221. https://doi.org/10.1016/S0963-9969(99)00092-7
Gibson, R. S., Yeudall, F., Drost, N., Mitimuni, B. & Cullinan, T. (1998a). Dietary interventions to prevent zinc deficiency. American Journal of Clinical Nutrition, 64:484S–487S. https://doi.org/10.1093/ajcn/68.2.484S
Gibson, R. S., Ferguson, E. L. & Lehrfeld, J. (1998b). Complementary foods for infant feeding in developing
countries: their nutrient adequacy and improvement. European Journal of Clinical Nutrition, 52:764-770. https:// doi.org/10.1038/sj.ejcn.1600645
Gibson, R.S., Bailey, K.B., Gibbs, M. & Ferguson, E.L. (2010). A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability. Food and Nutr Bulletin, 31(2):S134-S146. https://doi.org/10.1177%
2F15648265100312S206
Grenier, L. (1998). Working with Indigenous Knowledge: A Guide for Researchers. IDRC, Ottawa. https://www.idrc. ca/en/book/working-indigenous-knowledge-guide-re searchers
Gunshin, H., Allerson, C. R., Polycarpou-Schwarz, M., Rofts, A., Rogers, J. T., Kishi, F., Hentze, M. W., Rouault, T. A., Andrews, N. C. & Hediger, M. A. (2001). Iron-dependent regulation of the divalent metal ion transporter. FEBS Letters, 509:309-316. https://doi.org/10.1016/S0014-
5793(01)03189-1
Kabahenda, M. K., Amega, R., Okalany, E., Husken, S. M. C. & Heck, S. (2011). Protein and micronutrient composition of low-value fish products commonly marketed in the Lake Victoria region. World Journal of Agricultural Sciences, 7(5):521-526. https://hdl.handle.net/20.500.12348/1196
Kanensi, J. O., Ochola S., Gikonyo, N. K. & Makokha A. (2011). Optimization of the period of steeping and germina tion for amaranth grain. Journal of Agriculture Food and Technology, 1(6):101-105. https://ir-library.ku.ac.ke/ handle/123456789/5793
Kinyuru, J. N., Kenji, G. M., Njoroge, M. S. & Monica, A. (2010a). Nutritional potential of longhorn grasshopper (Ruspolia differens) consumed in Siaya District. Journal of Agriculture, Science and Technology, 12(1):32 - 47. http://
ir.jkuat.ac.ke/handle/123456789/2520
Kinyuru, J. N., Kenji, G. M., Njoroge, S. M. & Ayieko, M. (2010b). Effect of processing methods on the in vitro pro tein digestibility and vitamin content of edible winged ter mite (Macrotermes subhylanus) and grasshopper (Ruspolia differens). Food Bioprocess and Technology, 3(5):778–782. https://doi.org/10.1007/s11947-009-0264-1
Kinyuru, J. N. (2012). Development and evaluation of comple mentary foods based on traditional foodstuffs in Western Kenya. PhD thesis in Food Science and Nutrition in the Jomo Kenyatta University of Agriculture and Technology, Nairobi-Kenya, 115pp. http://ir.jkuat.ac.ke/han dle/123456789/1350?show=full
Kinyuru, N. J., Silvenus O. Konyole, Glaston M. Kenji, Christine A. Onyango, Victor O. Owino, Bethwell O. Owuor,
Benson B. Estambale, Henrik Friis & Nanna Roos (2012). Identification of traditional foods with public health poten tial for complementary feeding in western Kenya. Journal of Food Research, 1(2):148-158. https://doi.org/10.5539/ jfr.v1n2p148
King, F. S. & Burgess, A. (1993). Nutrition for Developing Countries, 2nd edn, ELBS with Oxford University Press, London. https://global.oup.com/academic/product/nutri tion-for-developing-countries-9780199685226 Lukmanji, Z., Hertzmark, E., Mlingi, N., Assey, V., Ndossi, G. & Fawzi, W. ( 2008). Tanzania Food Composition Tables. MUHAS TFNC, HSPH, Dar es Salaam, Tanzaniahttps://cdn1.sph. harvard.edu/wp-content/uploads/sites/30/2012/10/tan zania-food-composition-tables.pdf
Lutter, C. K. (2000). Processed complementary foods: summary of nutritional characteristics, methods of production and distribution, and costs. Food and Nutrition Bulletin, 22:95– 100. https://doi.org/10.1177%2F156482650002100118
Lutter, C. K. (2003). Macro-level approaches to improve the availability of complementary foods. Food and Nutrition Bulletin, 24:83–103. https://doi.org/10.1177 %2F156482650302400105
Lutter, C. K. & Dewey, K. G. (2003). Proposed nutrient com position of fortified complementary foods. Journal of Nutrition, 133:3011S–3020S. https://doi.org/10.1093/ jn/133.9.3011S
Martin, G. J. (1995). Ethnobotany: A methods manual. WWF, UNESCO & RBG, Kew, Chapman and Hall. https:// www.routledge.com/Ethnobotany-A-Methods-Manual/ Martin/p/book/9781844070848
Mbemba Fundu Di Luyindu, T. (2013). Aliments et den rées alimentaires traditionnels du Bandundu en R.D. Congo. Répertoire et composition en nutriments. Paris, L’Harmattan RDC., 325 pp. http://www.editions-harmat tan.fr/catalogue/couv/aplat/9782343017419.pdf
Mensah, P. & Tomkins, A, (2003). Household-level tech nologies to improve the availability and preparation of adequate and safe complementary foods. Food and Nutrition Bulletin, 24:104–125. https://doi.org/10.1177 %2F156482650302400106
Miller, D. D. (1996). Effects of cooking and food processing on the content of bioavailable iron in foods. In: Micronutrient Interactions: Impact on Child Health and Nutrition. ILSI, Washington DC, USA. https://www.yumpu.com/en/doc
ument/view/13267681/micronutrient-interactions-im pact-on-child-health-and-idpasorg
Muvundja, F. A., Uwikunda, S. H., Mande, P., Alungalu, F. G., Balagizi, K. I. & Isumbisho, M. P. (2013). Valorisation de
la chenille comestible Bunaeopsis aurantiaca dans la ges tion communautaire des forêts du Sud-Kivu (République Démocratique du Congo) , VertigO, Hors-série 17, septem bre 2013, consulté le 22 avril 2015. http://vertigo.revues. org/13929.
Muyonga, J. H., Nabakabya, D., Nakimbugwe, D. & Masinde D. (2008). Efforts to promote amaranth production and con sumption in Uganda to fight malnutrition. In Robertson, G.L. & Lupien, J.R. (Eds), Using Food Science and Technology to Improve Nutrition and Promote National Development. International Union of Food Science and Technology, 2-10. https://alimentosprocessados.com.br/ arquivos/ciencia-e-tecnologia/Using-Food-Science-and Technology-to-Improve....pdf
Mosha, T. C. E. & Bennink, M. R. (2005). Protein digestibili ty-corrected amino acid scores, acceptability and storage stability of ready-to-eat supplementary foods for pre-school age children in Tanzania. Journal of the Science of Food and Agriculture, 85:1513–1522. https://doi.org/10.1002/ jsfa.2147
Norhaizan, M. E. & Nor, F. A. A. (2009). Determination of phy tate, iron, zinc, calcium contents and their molar ratios in commonly consumed raw and prepared food in Malaysia. Malysian Journal of Nutrition, 15(2):213–222. https:// nutriweb.org.my/mjn/publication/15-2/j.pdf
Oberleas, D. & Harland, B. F. (1981). Phytate content of foods: effect on dietary zinc bioavailability. Journal of American Diet Association, 79:433 –436. https://doi.org/10.1016/ S0002-8223(21)39390-7
Ogoye-Ndegwa, C. and Aagaard-Hansen, J. (2003). Traditional gathering of wild vegetables among the luo of western kenya - A nutritional anthropology project. Ecology of Food and Nutrition, 42:69-89. https://doi.
org/10.1080/03670240303114
Ombeni, B. J. (2015). Evaluation de la valeur nutritionnelle des Aliments Sauvages Traditionnels consommés par les communautés rurales (Bashi, Barega et Bafulero), province du Sud-Kivu en République Démocratique du Congo. Mémoire Online, Institut Supérieur des Techniques Médicales de Bukavu, 134 pp. https://www.
memoireonline.com/03/17/9672/valuation-de-la-val eur-nutritionnelle-des-aliments-sauvagestradition nels-consommes-par-les-diff.html
Ombeni, J. B. & Munyuli, B. M. (2016). Évaluation de la valeur nutritionnelle des aliments sauvages traditionnels (Règne Animalia) intervenant dans la sécurité alimentaire des com munautés rurales du Sud-Kivu (République Démocratique
du Congo). Geo-Eco-Trop, 40(2):115-132. http://www. geoecotrop.be/uploads/publications/pub_402_03.pdf Onigbinde, A. O. & Adamolekun, B. (1998). The nutrient value of Imbrasia belina Lepidoptera: Saturnidae (madora). Central African Journal of Medicine, 44:125- 127. https:// pubmed.ncbi.nlm.nih.gov/9810409/
Owaga, E., Onyango C. A., Njoroge C. K. (2009). Assessment of insect contamination, acid insoluble ash content and colour characteristics of traditionally sun-dried and oven dried dagaa (Rastrineobola argentea). Journal of Applied Biosciences, 24:1497 – 1507. http://www.m.elewa.org/ JABS/2009/24/4.pdf
Owaga, E. E., Onyango, C. A. & Njoroge, C. K. (2010). Influence of selected washing treatments and drying temperatures on proximate composition of dagaa (Rastrineobola argen tea), a small pelagic fish species. African Journal of Food Agriculture, Nutrition and Development, 10(7):2834 - 2836. https://www.ajol.info/index.php/ajfand/article/ view/59031
Oyarzun S.E.; Graham J. & Eduardo V. (1996). Nutrition of the tamandua: Nutrient composition of termites and stomach contents from wild tamanduas (Tamandua tetradactyla). Zoo Biology, 15:509-524. https://doi.
org/10.1002/(SICI)1098-2361(1996)15:5%3C509::AID ZOO7%3E3.0.CO;2-F
Ramos-Elorduy J., Moreno, J. M. P., Prado, E. E., Perez, M. A., Otero, J. L. & Larron, D. G. O. (1997). Nutritional value of edible insects from the State of Oaxaca, Mexico. Journal of Food Composition and Analysis, 10:142-57. https://doi.
org/10.1006/jfca.1997.0530
Rhou, J. R. & Erdman, J. V. (1995). Phytic acid in health and dis ease. CRC Critical Reviews in Food Science and Nutrition, 35:495-508. https://doi.org/10.1080/10408399509527712
Sazawal, S., Black, R. E., Ramsan, M., Chwaya, H. M., Syoltzfus, R. J., Dutta, A. et al. (2006). Effects of routine prophylac tic supplementation with iron and folic acid on admission to hospital and mortality in preschool children in a high malaria transmission setting community-based, ran domised, placebocontrolled trial. Lancet, 307:133-143. https://doi.org/10.1016/S0140-6736(06)67962-2
Sehmi, K. J. (1993). National Food Composition Tables and the Planning of Satisfactory Diets in Kenya. Government Printers, Nairobi. http://www.fao.org/3/i8897en/ I8897EN.pdf
Silvenus, O., Konyole, Kinyuru, N. J., Bethwell, Owuor, O., Glaston, M., Kenji, Christine A. Onyango, Benson B. Estambale, Henrik Friis, Nanna Roos, Victor O. Owino (2012). Acceptability of amaranth grain-based nutritious
complementary foods with dagaa fish (Rastrineobola argentea) and edible termites (Macrotermes subhylanus) compared to corn soy blend plus among young children/ mothers dyads in western Kenya. Journal of Food Research, 1(3):111-120. https://www.ccsenet.org/journal/index. php/jfr/article/view/16809
Singh S., Shirani G. & Wakeling L. (2007). Nutritional aspects of food extrusion: a review. International Journal of Food Science and Technology, 42:916 – 929. https://doi. org/10.1111/j.1365-2621.2006.01309.x
Singleton, V. L. & Rossi, J. A. (1965). Colorimetry of total pheno lics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16:144 - 158. https://www.ajevonline.org/content/16/3/144
Singhal, R. S. & Kulkarni, P. R. (1990a). Utilization of Amaranthus paniculatas (Rajgeera) starch in salad dress ing. Starch/Starke, 42:52-53. https://doi.org/10.1002/ STAR.19900420206
Singhal, R. S. & Kulkarni, P. R. (1990b). Studies on appli cability of Amaranthus paniculatas (Rajgeeraa) starch for custard preparation. Starch/Starke, 42:102-103. https:// studylib.net/doc/13445073/
Soemantri, A. G., Pollitt, E. & Kim, I. (1985). Iron defi ciency anemia and educational achievement. American Journal of Clinical Nutrition, 42(6):1221-1228. https:// doi.org/10.1093/ajcn/42.6.1221
Sorensen, A. D., Sorensen, H., Bjergegaard, C., Andersen, K. E., Sondergaard, I., Sorensen, S. & Bukhave, K. (2007a). Matrix effects of lupine (Lupinus luteus L.) and rapeseed (Brassica napus L.) products on in-vitro non heme iron availability from pork meat. Journal of Food Composition and Analysis, 20:515-522. https://zh.booksc. eu/book/3687433/e3858a
Sorensen, A. D., Sorensen, H., Sondergaard, I. & Bukhave, K. (2007b). Non-heme iron availability from pork meat: Impact of heat treatments and meat protein dose. Meat Science, 76:29 – 37. https://doi.org/10.1016/j. meatsci.2006.10.008
Stevens, G. A., Finucane, M. M., De-Regil, L. M., Paciorek, C. J., Flaxman, S. R., Branca, F., Peña-Rosas J. P., Bhutta, Z. A. & Ezzati, M., (2013). Global, regional, and national trends in haemoglobin concentration and prevalence of total and severe anaemia in children and pregnant and non-pregnant women for 1995–2011: A systematic analy sis of population-representative data », The Lancet Global Health, 1(1):e16-e25. https://doi.org/10.1016/S2214- 109X(13)70001-9
Stoltzfus, R. J., Kvalsvig, J. D., Chwaya, H. M., Montresor, A., Albonico, M., Tielsch, J. M., Savioli, L. & Pollitt, E. (2001). Effects of iron supplementation and anthelmintic treatment on motor and language development of pre
school children in Zanzibar: Double blind, placebo con trolled study. British Medical Journal, 323:1389. https:// doi.org/10.1136/bmj.323.7326.1389
Teutonico, R. A. & Knorr, D. (1985). Amaranth: compo sition, properties and applications of a rediscovered food crop. Food Technology, 39(4):49–60. https://www.eap. mcgill.ca/CPAT_1.htm
Towo, E., Celestin, M., Godwin, D. N. & Kimboka, S. (2006). Effect of phytate and iron-binding phenolics on the content and availability of iron and zinc in micronutrients fortified cereal flours. African Journal of Food Agriculture, Nutrition and Development, 6(2):1123-1127. https://doi.
org/10.4314/ajfand.v6i2.71756
Verkerk, M. C., Tramper, J., Trijp, J. C. M. & Martens, D. E. (2007). Insect cells for human food. Biotechnology Advance, 25:198-202. https://doi.org/10.1016/j.bio techadv.2006.11.004
Walker, A. F. (1990). The contribution of weaning foods to protein energy malnutrition. Nutritional Review and Research, (3):25–47. https://doi.org/10.1079/ NRR19900005
WFP (2010). WFP handbook: Fortified Blended Food – Good Manufacturing Practice and HACCP Principles (A handbook for processors in partnership with the UN World Food Programme). http://foodquality.wfp.org
WHO (1998). Complementary feeding of young chil dren in developing countries: a review of current scien tific knowledge. WHO/ NUT/98.1, Geneva, Switzerland. https://apps.who.int/iris/handle/10665/65932
WHO/UNICEF (1998). Complementary Feeding of Young Children in Developing Countries: a review of the Current Scientific Knowledge. WHO Publications, Geneva. https:// apps.who.int/iris/handle/10665/65932
WHO (2002). Infant and Young Child Nutrition: Global Strategy on Infant and Young Child Feeding, World Health Assembly Document WHA55/15, WHO Press, Rome. https://apps.who.int/gb/archive/pdf_files/WHA55/ ea5515.pdf
WHO (2008). Indicators for assessing infant and young child feeding practices. WHO/NUT/2008.1, Geneva, WHO. http://whqlibdoc.who.int/publica tions/2008/9789241596664_eng.pdf
WHO (1993-2005). Anemia”. http://www.who.int/vmnis/ database/anaemia/anaemia_status_summary/fr/. Williams, P. (2007). Nutritional composition of red meat. Nutrition & Dietetics, 64(4):113–119. https://doi. org/10.1111/j.1747-0080.2007.00197.x
Yip, R. (1989). The changing characteristics of childhood iron nutritional status in the United States. In: Filer LJ Jr, éd. Dietary iron: birth to two years. New York, NY: Raven Press, pp. 3761.https://agris.fao.org/agris-search/search. do?recordID=US910194
countries: their nutrient adequacy and improvement. European Journal of Clinical Nutrition, 52:764-770. https:// doi.org/10.1038/sj.ejcn.1600645
Gibson, R.S., Bailey, K.B., Gibbs, M. & Ferguson, E.L. (2010). A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability. Food and Nutr Bulletin, 31(2):S134-S146. https://doi.org/10.1177%
2F15648265100312S206
Grenier, L. (1998). Working with Indigenous Knowledge: A Guide for Researchers. IDRC, Ottawa. https://www.idrc. ca/en/book/working-indigenous-knowledge-guide-re searchers
Gunshin, H., Allerson, C. R., Polycarpou-Schwarz, M., Rofts, A., Rogers, J. T., Kishi, F., Hentze, M. W., Rouault, T. A., Andrews, N. C. & Hediger, M. A. (2001). Iron-dependent regulation of the divalent metal ion transporter. FEBS Letters, 509:309-316. https://doi.org/10.1016/S0014-
5793(01)03189-1
Kabahenda, M. K., Amega, R., Okalany, E., Husken, S. M. C. & Heck, S. (2011). Protein and micronutrient composition of low-value fish products commonly marketed in the Lake Victoria region. World Journal of Agricultural Sciences, 7(5):521-526. https://hdl.handle.net/20.500.12348/1196
Kanensi, J. O., Ochola S., Gikonyo, N. K. & Makokha A. (2011). Optimization of the period of steeping and germina tion for amaranth grain. Journal of Agriculture Food and Technology, 1(6):101-105. https://ir-library.ku.ac.ke/ handle/123456789/5793
Kinyuru, J. N., Kenji, G. M., Njoroge, M. S. & Monica, A. (2010a). Nutritional potential of longhorn grasshopper (Ruspolia differens) consumed in Siaya District. Journal of Agriculture, Science and Technology, 12(1):32 - 47. http://
ir.jkuat.ac.ke/handle/123456789/2520
Kinyuru, J. N., Kenji, G. M., Njoroge, S. M. & Ayieko, M. (2010b). Effect of processing methods on the in vitro pro tein digestibility and vitamin content of edible winged ter mite (Macrotermes subhylanus) and grasshopper (Ruspolia differens). Food Bioprocess and Technology, 3(5):778–782. https://doi.org/10.1007/s11947-009-0264-1
Kinyuru, J. N. (2012). Development and evaluation of comple mentary foods based on traditional foodstuffs in Western Kenya. PhD thesis in Food Science and Nutrition in the Jomo Kenyatta University of Agriculture and Technology, Nairobi-Kenya, 115pp. http://ir.jkuat.ac.ke/han dle/123456789/1350?show=full
Kinyuru, N. J., Silvenus O. Konyole, Glaston M. Kenji, Christine A. Onyango, Victor O. Owino, Bethwell O. Owuor,
Benson B. Estambale, Henrik Friis & Nanna Roos (2012). Identification of traditional foods with public health poten tial for complementary feeding in western Kenya. Journal of Food Research, 1(2):148-158. https://doi.org/10.5539/ jfr.v1n2p148
King, F. S. & Burgess, A. (1993). Nutrition for Developing Countries, 2nd edn, ELBS with Oxford University Press, London. https://global.oup.com/academic/product/nutri tion-for-developing-countries-9780199685226 Lukmanji, Z., Hertzmark, E., Mlingi, N., Assey, V., Ndossi, G. & Fawzi, W. ( 2008). Tanzania Food Composition Tables. MUHAS TFNC, HSPH, Dar es Salaam, Tanzaniahttps://cdn1.sph. harvard.edu/wp-content/uploads/sites/30/2012/10/tan zania-food-composition-tables.pdf
Lutter, C. K. (2000). Processed complementary foods: summary of nutritional characteristics, methods of production and distribution, and costs. Food and Nutrition Bulletin, 22:95– 100. https://doi.org/10.1177%2F156482650002100118
Lutter, C. K. (2003). Macro-level approaches to improve the availability of complementary foods. Food and Nutrition Bulletin, 24:83–103. https://doi.org/10.1177 %2F156482650302400105
Lutter, C. K. & Dewey, K. G. (2003). Proposed nutrient com position of fortified complementary foods. Journal of Nutrition, 133:3011S–3020S. https://doi.org/10.1093/ jn/133.9.3011S
Martin, G. J. (1995). Ethnobotany: A methods manual. WWF, UNESCO & RBG, Kew, Chapman and Hall. https:// www.routledge.com/Ethnobotany-A-Methods-Manual/ Martin/p/book/9781844070848
Mbemba Fundu Di Luyindu, T. (2013). Aliments et den rées alimentaires traditionnels du Bandundu en R.D. Congo. Répertoire et composition en nutriments. Paris, L’Harmattan RDC., 325 pp. http://www.editions-harmat tan.fr/catalogue/couv/aplat/9782343017419.pdf
Mensah, P. & Tomkins, A, (2003). Household-level tech nologies to improve the availability and preparation of adequate and safe complementary foods. Food and Nutrition Bulletin, 24:104–125. https://doi.org/10.1177 %2F156482650302400106
Miller, D. D. (1996). Effects of cooking and food processing on the content of bioavailable iron in foods. In: Micronutrient Interactions: Impact on Child Health and Nutrition. ILSI, Washington DC, USA. https://www.yumpu.com/en/doc
ument/view/13267681/micronutrient-interactions-im pact-on-child-health-and-idpasorg
Muvundja, F. A., Uwikunda, S. H., Mande, P., Alungalu, F. G., Balagizi, K. I. & Isumbisho, M. P. (2013). Valorisation de