Aspergillus niger as Tomato Fruit (Lycopersicum esculentum Mill.) Quality Enhancer and Plant Health Promoter

Authors

  • Md Arshad Anwer 1Department of Plant Pathology, Bihar Agricultural University, Sabour, Bhagalpur (813210) India Author
  • Mujeebur Rahman Khan Department of Plant Protection, Aligarh Muslim University, Aligarh (202002) India Author

Keywords:

Tomato, Aspergillus niger, Quality, Ascorbic acid, Lycopene, Salicylic acid

Abstract

In order to study the effects of Aspergillus niger, an experiment was carried  out with application of nursery root-dip treatment with A. niger isolate (10  g/100 seedlings for 10 minutes), found significantly (P ≤ 0.001) increased the  yield and dry matter content of tomato plants. Application of all sixteen  isolates of A. niger significantly increased the accumulation of salicylic acid,  total phenolic and chlorophyll contents of plant, and lycopene, ascorbic acid  (Vitamin C), Brix index, diameter of fruit skin, rate of pressure tolerance of  tomato fruit compared to untreated control. Among the all isolates, A. niger SkNAn5 found to be the most efficient with increasing 54% yield and 59.8%  dry matter of tomato plants. A. niger SkNAn5 also maximum significantly  increased the salicylic acid of root, shoot with improved fruit quality of tomato  having increased amount of vitamin C (35.59 g/100 g against control 23.9  g/100 g), lycopene (9.8 mg/100 g against control 8.3 mg/100 g), and also had  increased rate of pressure tolerance of fruits (2.84 kg/cm against control 1.35  kg/cm). Increase in salicylic acid concentration may also increased the  diameter of fruit skin with most efficient isolate SkNAn5 (0.49 mm) almost  two fold compared to control (0.26 mm). Fruit Brix index of tomato plants  treated with SkNAn5 significantly increased (8.75) compared to non-treated  plants (5.81). These results suggest that nursery application of A. niger SkNAn5 may improve quantity and quality of tomato fruits.  

`  

References

AOAC. 1990. Official Methods of Analysis. 15th ed. Association of Official Analytical Chemists, Arlington, VA

Arnon, D. 1949. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24: 1- 15.

Bashan, Y., Okon, Y., Henis, Y. 1985. Peroxidase, polyphenol oxidase and phenols in relation to resistance against Pseudomonas syringae pv. tomato in Tomato. Canadian Journal of Botany, 65: 366-372.

Blumenthal, C. Z. 2004. Production of toxic metabolites in Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei: justification of mycotoxin testing in food grade enzyme preparations derived from the three fungi. Regulatory Toxicology and Pharmacology, 39: 214–228.

Boller, R. A. and Schroeder, H. W. 1974. Influence of Aspergillus candidus on production of aflatoxin in rice by Aspergillus parasiticus. Phytopathology, 64: 121-123.

Campbell, C. K. 1994. Forms of Aspergillosis. In: The Genus, Aspergillus (Eds. K. A. Powell, A. Renwick and J. F. Peberdy). Plenum Press, New York, pp. 313-319.

Chandra, A., Anand, A. and Dubey, A. 2007. Effect of salicylic acid on morphological and biochemical attributes in cowpea. Journal of Environmental Biology, 28: 193- 196.

Chattopadhyay, C. and Sen, B. 1996. Integrated management of Fusarium wilt of muskmelon caused by Fusarium oxysporum. Indian Journal of Mycology and Plant Pathology, 26: 162-170.

Chet, I., Inbar, J. and Hadar, I. 1997. Fungal antagonists and mycoparasites. In: The Mycota IV: Environmental and microbial relationships (Eds. D. T. Wicklow and B. Soderstrom). Springervorla, Berlin, pp. 165-184.

Doehlemann, G., Ramon, W., Horst, R. J., Voll, L. M., Usadel, B. et al. 2008. Reprogramming a maize plant: transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis. Plant Journal, 56: 181–195.

Domich, K. H., Gams, W. and Andeson, T. 1980. Compeniun of soil fungi (vol. 1 and 2). Acad.Press. London. pp. 405-859,

Esmailzadeh, A., Soleimani, Z. M. J. and Rouhani, H. 2008. Exogenous applications of salicylic acid for inducing systemic acquired

resistance against tomato stem canker disease. Journal of Biological Sciences, 8(6): 1039- 1044.

Fariduddin, Q., Hayat, S. and Ahmad, A. 2003. Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity and seed yield in Brassica juncea. Photosynthetica, 41: 281–284.

Farkas, G. L. and Kiraaly, Z. 1962. Role of phenolic compounds in the physiology of plant diseases and disease resistance. Journal of Phytopathology, 44(2): 105–150.

Firdous, S. S., Ashgar, R., Haque, M. I. and Afzal, S. N. 2007. Development of hypersensitive response by Xanthomonas campestris pv. sesami on Lycopersicon esculentum L., and Solanum Tuberosum L., leaves . Pakistan Journal of Botany, 39(6): 2135-2139.

Fish, W., Pearkins-Veazie, P. and Collins, J. 2002. A quantitative assay for lycopene that utilizes reduced volumes of organic solvents. Journal of Food Composition and Analysis, 15: 309-317

Garcia, P.C., Rivero, R. M., Lopez-Lefebre, L. R., Sdnchez, E., Ruiz, J. M. and Romero, L. 2001. Direct action of the biocide carbendazim on phenolic metabolism in tobacco plants. Journal of Agricultural Food Chemistry, 49: 131-137.

Garcia-Limones, C., Dorado, G. , Navas Cortes, J. A., Jimenez-Diaz, R. M. and M-Tena, M. 2008. Changes in the redox status of chickpea roots in response to infection by Fusarium oxysporum f. sp. ciceris: apoplastic antioxidant enzyme activities and

expression of oxidative stress related genes. Plant Biology, 11(2): 194 -203.

growth and crop yields. In: Proceeding, National Sympsoim on 047

Soil Biology, Hissar. pp. 125-138.

Gaur, A. C. 1985b. Phosphate solubilizing bacteria as bio-fertilizer. In: Proceeding, National Seminar on Development and Use of Biofertilizers, Ministry of Agriculture, New Delhi.

Gaur, A. C. 1990. Phosphate solubilising microorganisms as biofertilizers. Omega Scientific Publishes, New Delhi. pp. 176.

Gilman, J. C. 2001. A manual of soil fungi Biotech Books, Delhi. pp. 195-196.

Gracia de Salamone, I. E., Hynes, R. K. I. and Nelson, L. M. 2001. Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Canadian Journal of Microbiology, 47: 404-411.

Guest, D. I. 1984. Modification of defence responses in tobacco and capsicum following treatments with fosetyl-Al [aluminium tris (o-ethyl phosphonate)]. Physiology and Plant Pathology, 25: 125-134.

Gupta, S., Chakraborti, D., Sengupta, A., Basu, D. and Das, S. 2010. Primary metabolism of chickpea is the initial target of wound inducing early sensed Fusarium oxysporum f. sp. ciceri race I. PLoS ONE 5(2): e9030.

doi:10.1371/journal.pone.0009030.

Hayat, Q., Hayat, S., Irfan, M. and Ahmad, A. 2010. Effect of exogenous salicylic acid under changing environment: A review. Environmental and Experimental Botany, 68: 14-25.

Hayat, S., Fariduddin, Q., Ali, B. and Ahmad, A. 2005. Effect of salicylic acid on growth and enzyme activities of wheat seedlings. Acta Agron. Hung. 53: 433–437.

Hayman, D. S. 1975. Phosphorus cycling by soil microorganisms and roots. In: Soil Microbiology. A critical review (Ed. N Walker). Butterworths, London and Boston. pp. 67-92.

Horn, B. W. and Wicklow, D. T. 1983. Factors influencing the inhibition of aflatoxin production in corn by Aspergillus niger. Canadian Journal of Microbiology, 29: 1087-1091.

Houssien, A. A., Ahmed, S. M. and Ismail, A. A. 2010. Activation of tomato plant defence response against Fusarium wilt disease using Trichoderma harzianum and salicylic acid under greenhouse conditions. Research Journal of Agriculture and Biological Sciences, 6(3): 328-338.

Javaheri, M., Mashayekhi, K., Dadkhah, A. and Tavallaee, F. Z. 2012. Effects of salicylic acid on yield and quality characters of tomato fruit (Lycopersicum esculentum Mill.). International Journal of Agriculture Crop Sciences, 4(16): 1184-1187.

Jayakumar, J., Rajendran, G. and Ramakrishnan, S. 2006. Evaluation of salicylic acid as a systemic resistance inducer against Meloidogyne incognita on tomato

cv. Co3. Indian Journal of Nematology, 26(1): 77-80.

Jennings, D. H. 1989. Some perspectives on nitrogen and phosphorus metabolism in fungi. In: Nitrogen, Phosphorus and Sulphur Utilization by Fungi (Eds. L. Boddy, R. Marchant and D. J. Read). Cambridge University Press, Cambridge.

Jones, J. B., Woltz, S. S., Jones, J. P. and Portier, K. L. 1991. Population dynamics of Xanthomonas compestris pv. vesicatoria on tomato leaflets treated with copper bactericides. Phytopathology, 81:714-719.

Khan, B., Khan, A. A. and Khan, M. R. 2003. Pathogenic variability among isolates of Meloidogyne javanica on Capsicum annum. Journal of Nematology, 35(4): 430-432.

Khan, M. R. and Anwer, M. A. 2007. Molecular and biochemical characterization of soil isolates of Aspergillus niger and assessment of antagonism against Rhizoctonia solani. Phytopathologia Mediterranea, 46: 304-315.

Khan, M. R. and Anwer, M. A. 2008. DNA and some laboratory tests of nematode suppressing efficient soil isolates of Aspergillus niger. Indian Phytopathology, 61(2): 212-225.

Khan, M. R., Altaf, S., Mohidin, F. A., Khan, U. and Anwer, A. 2009. Biological control of plant nematodes with phosphate solubilizing microorganisms. In: Phosphate solubilizing microbes for crop improvement (Eds. M. S. Khan and A. Zaidi). Nova Science

Publisher Inc., New York, USA. pp. 395-426.

Khan, M. M. A., Gautam, A. K. C., Mohammad, F., Siddiqui, M. H., Naeem, M. and Khan, M. N. 2006. Effect of Gibberellic Acid Spray on Performance of Tomato. Turky Journal of Biology, 30: 11-16.

Khodary, S. F. A. 2004. Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in the salt stressed maize plants. International Journal of Agriculture Biology, 6: 5-8.

Kumar, P., Dube, S. D. and Chauhan, V. S. 1999. Effect of salicylic acid on growth, development and some biochemical aspects of soybean (Glycine max L. Merrill). International Journal of Plant Physiology, 4: 327-330.

Larque-Saavedra, A. and Martin-Mex, R. 2007. Effect of salicylic acid on the bio-productivity of plants. In: Acid. A Plant Hormone (Eds. Hayat, S. and Ahmad, A). Salicylic Springer Publishers. Dordrecht. The Netherlands.

Li, S. L., George, E. and Marschner, H. 1991. Phosphorus depletion and pH decrease at the root-soil and hyphae soil interfaces of VA mycorrhizal white clover fertilized with ammonium. New Phytologist, 119: 397-404.

Lowery, O. H., Roseenbrough, N. J., Farr, A. L. and Randall, R. H. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193: 265-275.

Martin-Mex, R., Villanueva-Couob, E., Herrera-Campos, T. and Larque

Saavedra A. 2005. Positive effect of salicylates on the flowering of African violet. Science of Horticulture, 103: 499-502.

Medina, A., Jakobsen, I., Vasiilev, N., Azcon, K. and Larsen, J. 2007. Fermentation of sugar beet waste by Aspergillus niger facilitate growth and P uptake of external mycelium of mixed populations of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry, 39: 485-492.

Molina, A., Hunt, M. D. and Ryals, J. A. 1998. Impaired fungicide activity in plants blocked in disease resistance signal transduction. Plant Cell, 10: 1903-1914.

Mondal, G., Dureja, P. and Sen, B. 2000. Fungal metabolites from Aspergillus niger AN27 related to plant growth promotion. Indian Journal of Experimental Biology, 38(1): 84-7.

Mostafa, M. A. and Yovssef, Y. A. 1962. Studies on peritrophie mycorrhiza between Tropaeolum majus L. and two associated rhizospherie fungi. III. Effect of fungal metabolites on relative growth vigour of Tropaeoliem mains L. Egypt Journal of Botany, 111: 137-151.

O'Connell, R. J., Panstruga, R .2006. Tete and tete inside a plant cell: establishing compatibility between plants and biotrophic fungi and oomycetes. New Phytologist, 171: 699-718.

Pankaj, C. G., Shakil, N. A., Kishor, V. and Rohatgi, D. 2005. Estimation of salicylic acid and its role resistance mechanism in chickpea against Meloidogyne incognita. Indian Journal of Nematology, 35(2): 160- 162.

Raju, S., Jayalakshmi, S. K., Sreeramulu, K. 2008. Comparative study on the induction of defence related enzymes in two different cultivars of chickpea (Cicer arietinum L.) genotypes by salicylic acid, spermine and Fusarium oxysporum. Australian Journal of Crop Science, 2(3): 121-140.

Ramachandran, S., Fontanille, P., Pandey, A. and Larroche, C. 2008. Stability of glucose oxidase activity of Aspergillus niger spores produced by solid-state fermentation and their role as biocatalysts in bioconversion reaction. Food Technology and Biotechnology, 46(2): 190-194.

Rao, A. B. 1990. Role of microorganisms in plant nutrition under acid conditions. In: Biofertilizers (Ed. LL Vyas). Scientific Publication, Jaudpur, Rajasthan, India. pp. 67- 84.

Raper, K. and Fennell, D. 1965. The genus Aspergillus. Baltimore, MD: Williams and Wilkins Company.

Saikia, R., Yadav, M., Singh, B. P., Gogoi, D. K., Singh, T. and Arora, D. K. 2006. Induction of resistance in chickpea by cell wall protein of Fusarium oxysporum f. sp. ciceri and Macrophomina phaseolina. Current Science, 91(11): 1543-1546.

Sen, B. 2000. Biocontrol: A success story. Indian Phytopathology, 53(3): 243- 249.

Shakirova, F. M. 2007. Role of hormonal system in the manisfestation of growth promoting and anti-stress action of salicylic acid. In: Salicylic Acid. A Plant Hormone (Eds. Hayat, S. and Ahmad, A.). Springer. Dordrecht. Netherlands.

Sharma, H. K., Prasad, D. and Sharma, P. 2005. Compatibility of Fungal bioagents as seed dressers with carbofuran in okra against Meloidogyne incognita. In: National Symposium on Recent Advances and Research Priorities in Indian Nematology, Dec. 9-11, 2005, IARI New Delhi. pp. 72.

Singh, R., Sindhu, A., Singal, H. R. and Singh, R. 2003. Biochemical basis of resistance in chickpea (Cicer arietinum L.) against Fusarium wilt. Acta Phytopathologica et Entomologica Hungarica, 38(1-2): 13-19.

Sperber, J. I. 1958. Solution of mineral phosphates by soil bacteria. Nature, 180: 994-995.

Tempe, J. de. 1970. Routine methods for determining the health condition of seeds in seed testing station. In: Proceedings of International Seed Testing Association, 35: 257.

Vaddar, U. B. and Patil, A. B. 2007. Studies on Grape Rhizosphere Microorganisms. Karnataka Journal of Agricultural Sciences, 20(4): 932.

Vassilev, N., Franco, I., Vessileva, M. and Azcon, R. 1996. Improved plant growth with rock phosphate solubilized by Aspergillus niger grown on sugarbeet waste. Bioresource Technology, 55: 237- 241.

Vassilev, N., Vassileva, M. and Nikolaeva, I. 2006. Simultaneous P solubilizing and bio-control activity of microorganisms: potentials and future trends. Applied Microbiology and Biotechnology, 71: 137-144.

Vosburgh, W. C. and Cooper, G. R. 1941. Complex ions. 1. The identification of complex ions in solution by spectrophotometric measurements. Journal of American Chemical Society, 63(2): 437-442.

Wakman, S. A. 1927. Principles of soil Microbiology. Baltimore; Williams and Wilkins Co. pp. 600.

Wicklow, D. T., Hesseltine, C. W., Shotwell, O. L. and Adams, G. L.

Interference, competition and aflatoxin levels in corn. Phytopathology, 70: 761-764.

Zhou, X. M., Mackeuzie, A. F., Madramootoo, C. A., Smith, D. L. J. 1999. Effects of some injected plant growth regulators with or without sucrose on grain production biomass and photosynthetic activity of field

grown corn plants. Agronomy and Crop Science, 183: 103-110.

Published

2013-10-31

How to Cite

Anwer, M.A., & Khan, M.R. (2013). Aspergillus niger as Tomato Fruit (Lycopersicum esculentum Mill.) Quality Enhancer and Plant Health Promoter . Journal of Postharvest Technology, 1(1), 36–51. Retrieved from https://acspublisher.com/journals/index.php/jpht/article/view/15789