COMPARATIVEANALYSIS OF MORPHOLOGICAL FEATURESOF HUMAN CLAVICLEAND STERNUM FORFORENSICANTHROPOLOGICAL PURPOSES

Authors

  • J S Sehrawat Assistant Professor, Anthropology Department, Panjab University, Chandigarh, India 160014

Keywords:

Forensic anthropology, non-metric traits, clavicle and sternum, age and sex estimations, comparative analysis

Abstract

  Identification of badly damaged human skeletal remains poses a serious challenge to forensic anthropologists. The non-metric osteological and mitochondrial DNA analyses are the preferred options for establishing the identity of such remains; the former  technique being comparatively simpler, easier, quicker and cheaper one. Present study was conducted with an  aim to investigate the comparative suitability of non- metric traits of clavicle and sternum for forensic anthropological purposes. Ten clavicular and eight sternal non-metric traits were examined for their sex and age dependency in 343 pairs of clavicles and equal number of sternums collected from Northwest Indian autopsied  cadavers. Significant sex and age dependent variations were noticed in almost all the clavicular features except conoid and deltoid tubercles. Male clavicles were either ‘long and smooth’ or ‘long and robust’ whereas the females  had mostly ‘short and smooth’ clavicles. Indian clavicles show epiphyseal union activity for later years than most other nationalities. The arch-shaped ventral prominence on manubrium, crescent costal incisures, mesosternal  ventral strips etc., were found the male sternal characteristics. The clavicular non-metric traits had higher forensic anthropological significance than the sternal features.

References

Buikstra JE, Ubelaker DH.Standards for data collection

from human skeletal remains. Arkansas Archaeological

Survey Research Series, 1994; 44, Arkansas.

Verna E, Piercecchi-Marti MD, Chaumoitre K,

Bartoli C, Leonetti G, Adalian P. Discrete traits of thesternum and ribs: A useful contribution to identification

in forensic anthropology in Europe. J forensic Sci. 2013;58(3):571-577

Berry AC, Berry RJ. Epigenetic variations in the

human cranium. J Anat. 1967; 101:361-379

Saunders SR, Rainey DL. Non-metric trait variation

in the skeleton: Abnormalities, Anomalies and

Atavisms. In: Biological Anthropology of the Human

Skeleton. Katzenberg MA and Saunders SR ed. pp

-560. Hoboken, New Jersey: John Wiley & Sons,

Inc; 2008.

Sjovold T. Non-metric divergences between skeletal

populations. Ossa.1977; 4 (Suppl.):1-133

Cheverud JM, Buikstra JE, Twitchell E. Relationship

between non-metric skeletal traits and cranial shape

and size. Am J Phys Anthropol. 1979; 50:191-198

Buikstra JE, Frankenberg SR, Konigsberg LW.

Skeletal biological distance studies in American

physical anthropology: recent trends. Am J Phys

Anthropol. 1990; 82:1-8

Schmitt A, Cunha E, Pineiro J. Pathology as a factor

of personal identity in forensic anthropology. In:

Forensic anthropology and medicine: complementary

sciences from recovery to cause of death. Totowa,

Canada, Humana Press, 2006; 480

Finnegan M. Non-metric variation of the infra-cranial

skeleton. J Anat. 1978; 125:23-37

Berry AC. Factors affecting the incidence of non-

metric skeletal variants. J Anat. 1975; 120:519-535

Brues A. The once and future diagnosis of race. In: G

Gill, S Rhine (Ed), Skeletal Attribution of Race,

University of New Mexico Press, Maxwell Museum of

Anthropological Papers No. 4, Albuquerque NM, 1990.

Krogman WM, Iscan MY. The Human Skeleton in

Forensic Medicine, CC Thomas, Springfield, 1986.

Bass WM. Human Osteology: A Laboratory and Field

Manual. 5th ed., Missouri Archaeological Society,

Columbia, MO, 2005.

Brown K. Ancient DNA application in human

osteoarchaeology. In: Case M, Mays S (Ed)Human

Osteology in Archaeology and Forensic Sciences,

Medical Media Ltd., London, Greenwich. 2006; pp 455-473

Langley NR, Dudzik B, Cloutier A. A decision tree

for nonmetric sex assessment from the skull. J Forensic

Sci. 2017; doi:10.1111/1556-4029.13534

Mariano del Sol, Vasquez B, Cantin M. Metric and

non-metric morphological traits of the sternum in

Mapuche. Int J Morphol. 2014; 32(1): 351-356

McFadden C, Oxenham MF. Sex, parity, and scars: A

Meta-analytic Review. J Forensic Sci. 2017; doi:

/1556-4029.478

Soames RW. Gray’s Anatomy. 38th ed. London: ELBS

with Churchill Livingstone. 1995; pp 537-539

Fenton TW, Birkby WH, Cornelison J. A fast and

safe non-bleaching method for forensic skeletal

preparation. J Forensic Sci. 2003; 48 (1):174e6

McKern TW, Stewart TD. Skeletal age changes in

young American Males: analyzed from the standpoint

of age identification. Headquarters Quartermaster

Research and Development Command Technical

report, EP – 45, 1957.

Williams PL, Warwick R, Dyson M, Bannister LN.

Gray’s Anatomy, 37th ed., Churchill, Livingstone.

; pp 270

Black S, Scheuer B. Age changes in the clavicle:

from the early neonatal period to skeletal maturity. Int

J Osteoarchaeol. 1996; 6:425-434

Julian D, Timorthy M, Ogben A. Postnatal

development of human sternum. J Pediatr Orthop.

; 18:398–405

Schultz D, Rother U, Fuhrmann A, Richel S,

Faulmann G, Heiland M. Correlation of age and

ossification of the medial clavicular epiphysis using

computed tomography. Forensic Sci Int. 2006;

:184-189

Kaur J, Choudhary R, Raheja S, Dhissa NC. Non

metric traits of the skull and their role in

anthropological studies. J Morphol Sci. 2012; 29(4):

-194

Singh J, Chavali KH. Regional variations in the

incidence of mesosternal foramina in a North Indian

population. Int. J Med Toxico Leg Med. 2010;13:15-20

Singh J, Pathak RK. Sex and age related non-metric

variation of the human sternum in a Northwest Indian

post-mortem sample: a pilot study. Forensic Sci Int.

; 228:181e.1-181e.12

El-Najjar MY, McWilliams KR. Skeletal non-metric

traits.In: M.Y. El-Najjar, K.R. McWilliams (Ed), Forensic

Anthropology: The Structure, Morphology, and

Variation of Human Bone and Dentition, Springfield,

Charles C Tomas. 1978; pp, 116–149

Mays S. The Archaeology of Human Bones,

Routledge, London, 1998.

White TD. Human Osteology, 2nd ed. 2000; San Diego:

New York: Academic Press

Schutkowski H. Sex determination of infant and

juvenile skeletons: 1. Morphognostic features. Am J

Phys Anthropol. 1993; 90: 199-206

Walker PL, Johnson JR, Lambert PM. Age and sex

biases in the preservation of human skeletal remains.

Am J Phys Anthropol. 1988; 76: 183–18833. Acsadi G, Nemeskeri J. History of human life span

and mortality. Akademiai Kiado:Budapest, 1970

Novotny V, Iscan MY, Loth SR. Morphologic and

osteometric assessment of age, sex, and race from the

skull. In: Forensic Analysis of the Skull, Iscan MY,

Helmer RP (ed). Wiley-Liss, Inc: New York, 1993;71–

Corruccini R. A critical examination of the meaning

of discrete traits for human skeletal biological studies.

Am J Phys Anthropol. 1974;40:425-445

Lewis CJ, Garvin HM. Reliability of the Walker cranial

non-metric method and implications for sex estimation.

J Forensic Sci. 2016; 61(3): 743-751

Cheverud JM, Buikstra JE. Quantitative genetics of

non-metric traits in rhesus macaques on Cayo

Santiago. II. Phenotypic, genetic and environmental

correlations between traits. Am J Phys Anthropol. 1981;54(1):51-58.

Jit I and Kaur H. Rhomboid fossa in the clavicles of

North Indians. Am J Phys Anthropol. 1986; 97:97-103

Shauffer IA, Collins WV. The deep clavicular

rhomboid fossa. J Am Med Assoc. 1966; 195:158-159

Rogers NL, Flournoy LE, McCormick. The rhomboid

fossa as a sex and age estimator. J Forensic Sci. 2000;

(1):61-67

Prado FB, Santos LSM, Caria PFH, Kawaguchi JT,

Preza AOG, Silva RI, Daruge E. Incidence of clavicular

rhomboid fossa (impression for costo-clavicular

ligament) in a Brazilian population: Forensic

applications. J Forensic Odontostomatol. 2009; 27

(1):12-16

Ray LJ. Metrical and non-metrical features of the

clavicle of the Australian aboriginal. Am J Phys

Anthropol. 1959; 17:217-226

Parsons FG. On the proportions and characteristics

of the modern English clavicle. J Anat. 1916;51:71-93.

Kizilkanat E, Boyan N, Ozsahin ET et al. Location,

number and clinical significance of nutrient foramina

in human long bones. Ann Anat. 2007; 189:87–95

Henderson RG. The position of the nutrient foramen

in the growing tibia and femur of the rat. J Anat. 1978;

:593–599

Standring S. Gray’s anatomy, The anatomical basis of

clinical practice. 39th ed. Churchill Livingstone, Spain,

; pp 817–818

Murlimanju BV, Prabhu LV, Pai MP, Yadav A,

Dhananjaya KVN, Prasanth KV. Neurovascular

foramina of the human clavicle and their clinical

signiûcance. Surg Radiol Anat. 2011; 33:679–682

Kumar R, Lindell MM, Madewell JE et al. The clavicle:

normal and abnormal. Radiographics 1989; 9:677–706

Havet E, Duparc F, Tobenas-Dujardin AC et al.

Vascular anatomical basis of clavicular non-union.

Surg Radiol Anat. 2008; 30:23-32

Lewis OJ. The coracoclavicular joint. J Anat. 1959;

:296-303

Abe K. On the coraco-clavicular joint and its incidence.

Acta Anat Nippon 1964; 39:227-231

Nalla S, Asvat R. Incidence of coraco-clavicular joint in

South African populations. J Anat. 2005; 186:645-649

Gumina S, Salvatore M, Santis PD, Orsina L,

Postacchini F (2002) Coracoclavicular joint: osteologic

study of 1020 human clavicles. J Anat. 2002; 201:513-

Schaefer MC, Black SM. Comparison of ages of

epiphyseal union in North American and Bosnian

skeletal material. J Forensic Sci. 2005; 50(4):777-784

Schaefer MC, Black SM. Epiphyseal union

sequencing: aiding in the recognition and sorting of

commingled remains.J Forensic Sci. 2007; 52(2):277-285

Langley NR. The lateral clavicular epiphysis: fusion

timing and age estimation. Int J Leg Med. 2016;

(2):511-517

Galstaun G. A study of ossification as observed in

Indian subjects. Indian J Med Resear. 1937; 25:267-

Jit I, Kulkarni M. Times of appearance and fusion of

epiphysis at the medial end of the clavicle. Ind J Med

Res. 1976;64 (5):773-782

Kreitner KF, Schweden FJ, Riepert T, Nafe B, Thelen

M. Bone age determination based on the study of

medial extremity of clavicle. Eur Radiol. 1998; 8

(7):1116-1122

Franklin D, Flavel A. CT evaluation of timing for

ossification of the medial clavicle epiphysis in a

contemporary Western Australian population. Int J

Leg Med. 2015; 129(3):583-594

Paterson AM. The Human Sternum, William and

Norgate, London,1904; pp 42-67

McCormick WF. Sternal foramina in man. Am J

Forensic Med Pathol. 1981; 2: 249–252

Goodman LR, Teplick SK, Kay H. Computed

tomography of the normal sternum. Am J Roentgenol.

;141:219–223

Jit I, Bakshi V. Incidence of foramina in North Indian

sterna. J Anat Soc India 1984; 33:77–84

Stark P. Midline sternal foramen: CT demonstration.

J Comput Assist Tomogr. 1985; 9:489–490

Cooper PD, Stewart JH, McCormick67. Yekeler E, Tunaci M, Tunaci A, Dursum M, Acunas G.

Frequency of sternal variations and anomalies

evaluated by MDCT. Am J Radiol. 2006; 186:956–960

Stieve H, Hintzsche E. Ucher die Form des

menschlichen, Brustbeins. Z Morphol Anthropol.

(Translated in English); 23: 361–410

Ashley GT. Typing of the human sternum: the

influence of age and sex on its measurements. J

Forensic Med. 1956; 3:27–43

Moore MK, Stewart JH, McCormick WF.Anomalies

of the human chest plate area. Am J Forensic Med

Pathol. 1988; 9: 348–354

Aktan ZA, Savas R. Anatomic and HRCT

demonstration of midline sternal foramina. Turk J Med

Sci. 1998; 28:511–514

Stark P, Jaramillo D. CT of the sternum. Am J

Roentgenol. 1986; 147(1):72-77

Destouet JM, Gilula LA, Morphy WA, Sagel SS.

Computed tomography of the sterno-clavicular joint

and sternum. Radiol. 1981; 138:123-128.

Lucet L, LeLoet X, Menard JF, Mejjad O, Louvel JP,

Janvresse A, Dragon A. Computed tomography of

the normal streno-clavicular joint. Skeletal Radiol. 1996; 25(1):237-241

Jit I, Bakshi V. Time of fusion of the human

mesosternum with manubrium and xiphoid process.

Ind J Med Res. 1986; 83:322–331

Vyas PC, Saraswat PK, Pathak SK. Age of fusion of

sternal segments: a roentgenlogic study in individuals

of Jaipur. J Forensic Med Toxicol. 1999;16:17–18

Scheuer L, Black SM. The Juvenile Skeleton,

Academic Press, London,2004; pp 230–238

Birmingham A. The asymmetry of the sternum. Trans.

R. Acad. Ireland,1896; 14: 400–407

Rodriguez-Vazquez JF, Verdugo-Lopez S, Garrido

JM, Murakami G, Kim JH. Morphogenesis of the

manubrium of sternum in human embryos: a new

concept. Anat Rec (Hoboken), 2013; 296 (2): 279-289

Tyrell A. Skeletal non-metric traits and the assessment

of inter- and intra- population diversity: past problems

and future potential. In: Human Osteology in

Archaeology and Forensic Science, Cox M, ed.,2000;

London: Greenwich Medical Media

Freire S, Dunford A. Reliability study for scoring a

non-metric human osteological trait. J Collegiate

Anthropol. 2012; 4(1): 173-191

Singh J, Singh D, Pathak RK. Rhomboid fossa of

clavicle: is it reliable estimator of gender and age of

Northwest Indian subjects of Chandigarh region.

J Punjab Acad Forensic Med Toxicol. 2009; 9: 58-65

Carroll SE. A study of the nutrient foramina of humeral

diaphysis. J Bone Joint Surg. 1963; 45-B: 176-181

Ji L, Terazawa K, Tsukamoto T, Haga K. Estimation

of age from epiphyseal union of degrees of the sternal

end of the clavicle. Hokkaido Igaku Zasshi. 1997; 69

(1):104-111

Taylor HL. The sternal foramen: the possible forensic

misinterpretation of an anatomic abnormality. J

Forensic Sci. 1974; 19: 730–734.

Published

2018-01-30

How to Cite

COMPARATIVEANALYSIS OF MORPHOLOGICAL FEATURESOF HUMAN CLAVICLEAND STERNUM FORFORENSICANTHROPOLOGICAL PURPOSES. (2018). Journal of Forensic Medicine & Toxicology, 34(2), 1–13. Retrieved from https://acspublisher.com/journals/index.php/jfmt/article/view/17461