COMPARATIVEANALYSIS OF MORPHOLOGICAL FEATURESOF HUMAN CLAVICLEAND STERNUM FORFORENSICANTHROPOLOGICAL PURPOSES
Keywords:
Forensic anthropology, non-metric traits, clavicle and sternum, age and sex estimations, comparative analysisAbstract
Identification of badly damaged human skeletal remains poses a serious challenge to forensic anthropologists. The non-metric osteological and mitochondrial DNA analyses are the preferred options for establishing the identity of such remains; the former technique being comparatively simpler, easier, quicker and cheaper one. Present study was conducted with an aim to investigate the comparative suitability of non- metric traits of clavicle and sternum for forensic anthropological purposes. Ten clavicular and eight sternal non-metric traits were examined for their sex and age dependency in 343 pairs of clavicles and equal number of sternums collected from Northwest Indian autopsied cadavers. Significant sex and age dependent variations were noticed in almost all the clavicular features except conoid and deltoid tubercles. Male clavicles were either ‘long and smooth’ or ‘long and robust’ whereas the females had mostly ‘short and smooth’ clavicles. Indian clavicles show epiphyseal union activity for later years than most other nationalities. The arch-shaped ventral prominence on manubrium, crescent costal incisures, mesosternal ventral strips etc., were found the male sternal characteristics. The clavicular non-metric traits had higher forensic anthropological significance than the sternal features.
References
Buikstra JE, Ubelaker DH.Standards for data collection
from human skeletal remains. Arkansas Archaeological
Survey Research Series, 1994; 44, Arkansas.
Verna E, Piercecchi-Marti MD, Chaumoitre K,
Bartoli C, Leonetti G, Adalian P. Discrete traits of thesternum and ribs: A useful contribution to identification
in forensic anthropology in Europe. J forensic Sci. 2013;58(3):571-577
Berry AC, Berry RJ. Epigenetic variations in the
human cranium. J Anat. 1967; 101:361-379
Saunders SR, Rainey DL. Non-metric trait variation
in the skeleton: Abnormalities, Anomalies and
Atavisms. In: Biological Anthropology of the Human
Skeleton. Katzenberg MA and Saunders SR ed. pp
-560. Hoboken, New Jersey: John Wiley & Sons,
Inc; 2008.
Sjovold T. Non-metric divergences between skeletal
populations. Ossa.1977; 4 (Suppl.):1-133
Cheverud JM, Buikstra JE, Twitchell E. Relationship
between non-metric skeletal traits and cranial shape
and size. Am J Phys Anthropol. 1979; 50:191-198
Buikstra JE, Frankenberg SR, Konigsberg LW.
Skeletal biological distance studies in American
physical anthropology: recent trends. Am J Phys
Anthropol. 1990; 82:1-8
Schmitt A, Cunha E, Pineiro J. Pathology as a factor
of personal identity in forensic anthropology. In:
Forensic anthropology and medicine: complementary
sciences from recovery to cause of death. Totowa,
Canada, Humana Press, 2006; 480
Finnegan M. Non-metric variation of the infra-cranial
skeleton. J Anat. 1978; 125:23-37
Berry AC. Factors affecting the incidence of non-
metric skeletal variants. J Anat. 1975; 120:519-535
Brues A. The once and future diagnosis of race. In: G
Gill, S Rhine (Ed), Skeletal Attribution of Race,
University of New Mexico Press, Maxwell Museum of
Anthropological Papers No. 4, Albuquerque NM, 1990.
Krogman WM, Iscan MY. The Human Skeleton in
Forensic Medicine, CC Thomas, Springfield, 1986.
Bass WM. Human Osteology: A Laboratory and Field
Manual. 5th ed., Missouri Archaeological Society,
Columbia, MO, 2005.
Brown K. Ancient DNA application in human
osteoarchaeology. In: Case M, Mays S (Ed)Human
Osteology in Archaeology and Forensic Sciences,
Medical Media Ltd., London, Greenwich. 2006; pp 455-473
Langley NR, Dudzik B, Cloutier A. A decision tree
for nonmetric sex assessment from the skull. J Forensic
Sci. 2017; doi:10.1111/1556-4029.13534
Mariano del Sol, Vasquez B, Cantin M. Metric and
non-metric morphological traits of the sternum in
Mapuche. Int J Morphol. 2014; 32(1): 351-356
McFadden C, Oxenham MF. Sex, parity, and scars: A
Meta-analytic Review. J Forensic Sci. 2017; doi:
/1556-4029.478
Soames RW. Gray’s Anatomy. 38th ed. London: ELBS
with Churchill Livingstone. 1995; pp 537-539
Fenton TW, Birkby WH, Cornelison J. A fast and
safe non-bleaching method for forensic skeletal
preparation. J Forensic Sci. 2003; 48 (1):174e6
McKern TW, Stewart TD. Skeletal age changes in
young American Males: analyzed from the standpoint
of age identification. Headquarters Quartermaster
Research and Development Command Technical
report, EP – 45, 1957.
Williams PL, Warwick R, Dyson M, Bannister LN.
Gray’s Anatomy, 37th ed., Churchill, Livingstone.
; pp 270
Black S, Scheuer B. Age changes in the clavicle:
from the early neonatal period to skeletal maturity. Int
J Osteoarchaeol. 1996; 6:425-434
Julian D, Timorthy M, Ogben A. Postnatal
development of human sternum. J Pediatr Orthop.
; 18:398–405
Schultz D, Rother U, Fuhrmann A, Richel S,
Faulmann G, Heiland M. Correlation of age and
ossification of the medial clavicular epiphysis using
computed tomography. Forensic Sci Int. 2006;
:184-189
Kaur J, Choudhary R, Raheja S, Dhissa NC. Non
metric traits of the skull and their role in
anthropological studies. J Morphol Sci. 2012; 29(4):
-194
Singh J, Chavali KH. Regional variations in the
incidence of mesosternal foramina in a North Indian
population. Int. J Med Toxico Leg Med. 2010;13:15-20
Singh J, Pathak RK. Sex and age related non-metric
variation of the human sternum in a Northwest Indian
post-mortem sample: a pilot study. Forensic Sci Int.
; 228:181e.1-181e.12
El-Najjar MY, McWilliams KR. Skeletal non-metric
traits.In: M.Y. El-Najjar, K.R. McWilliams (Ed), Forensic
Anthropology: The Structure, Morphology, and
Variation of Human Bone and Dentition, Springfield,
Charles C Tomas. 1978; pp, 116–149
Mays S. The Archaeology of Human Bones,
Routledge, London, 1998.
White TD. Human Osteology, 2nd ed. 2000; San Diego:
New York: Academic Press
Schutkowski H. Sex determination of infant and
juvenile skeletons: 1. Morphognostic features. Am J
Phys Anthropol. 1993; 90: 199-206
Walker PL, Johnson JR, Lambert PM. Age and sex
biases in the preservation of human skeletal remains.
Am J Phys Anthropol. 1988; 76: 183–18833. Acsadi G, Nemeskeri J. History of human life span
and mortality. Akademiai Kiado:Budapest, 1970
Novotny V, Iscan MY, Loth SR. Morphologic and
osteometric assessment of age, sex, and race from the
skull. In: Forensic Analysis of the Skull, Iscan MY,
Helmer RP (ed). Wiley-Liss, Inc: New York, 1993;71–
Corruccini R. A critical examination of the meaning
of discrete traits for human skeletal biological studies.
Am J Phys Anthropol. 1974;40:425-445
Lewis CJ, Garvin HM. Reliability of the Walker cranial
non-metric method and implications for sex estimation.
J Forensic Sci. 2016; 61(3): 743-751
Cheverud JM, Buikstra JE. Quantitative genetics of
non-metric traits in rhesus macaques on Cayo
Santiago. II. Phenotypic, genetic and environmental
correlations between traits. Am J Phys Anthropol. 1981;54(1):51-58.
Jit I and Kaur H. Rhomboid fossa in the clavicles of
North Indians. Am J Phys Anthropol. 1986; 97:97-103
Shauffer IA, Collins WV. The deep clavicular
rhomboid fossa. J Am Med Assoc. 1966; 195:158-159
Rogers NL, Flournoy LE, McCormick. The rhomboid
fossa as a sex and age estimator. J Forensic Sci. 2000;
(1):61-67
Prado FB, Santos LSM, Caria PFH, Kawaguchi JT,
Preza AOG, Silva RI, Daruge E. Incidence of clavicular
rhomboid fossa (impression for costo-clavicular
ligament) in a Brazilian population: Forensic
applications. J Forensic Odontostomatol. 2009; 27
(1):12-16
Ray LJ. Metrical and non-metrical features of the
clavicle of the Australian aboriginal. Am J Phys
Anthropol. 1959; 17:217-226
Parsons FG. On the proportions and characteristics
of the modern English clavicle. J Anat. 1916;51:71-93.
Kizilkanat E, Boyan N, Ozsahin ET et al. Location,
number and clinical significance of nutrient foramina
in human long bones. Ann Anat. 2007; 189:87–95
Henderson RG. The position of the nutrient foramen
in the growing tibia and femur of the rat. J Anat. 1978;
:593–599
Standring S. Gray’s anatomy, The anatomical basis of
clinical practice. 39th ed. Churchill Livingstone, Spain,
; pp 817–818
Murlimanju BV, Prabhu LV, Pai MP, Yadav A,
Dhananjaya KVN, Prasanth KV. Neurovascular
foramina of the human clavicle and their clinical
signiûcance. Surg Radiol Anat. 2011; 33:679–682
Kumar R, Lindell MM, Madewell JE et al. The clavicle:
normal and abnormal. Radiographics 1989; 9:677–706
Havet E, Duparc F, Tobenas-Dujardin AC et al.
Vascular anatomical basis of clavicular non-union.
Surg Radiol Anat. 2008; 30:23-32
Lewis OJ. The coracoclavicular joint. J Anat. 1959;
:296-303
Abe K. On the coraco-clavicular joint and its incidence.
Acta Anat Nippon 1964; 39:227-231
Nalla S, Asvat R. Incidence of coraco-clavicular joint in
South African populations. J Anat. 2005; 186:645-649
Gumina S, Salvatore M, Santis PD, Orsina L,
Postacchini F (2002) Coracoclavicular joint: osteologic
study of 1020 human clavicles. J Anat. 2002; 201:513-
Schaefer MC, Black SM. Comparison of ages of
epiphyseal union in North American and Bosnian
skeletal material. J Forensic Sci. 2005; 50(4):777-784
Schaefer MC, Black SM. Epiphyseal union
sequencing: aiding in the recognition and sorting of
commingled remains.J Forensic Sci. 2007; 52(2):277-285
Langley NR. The lateral clavicular epiphysis: fusion
timing and age estimation. Int J Leg Med. 2016;
(2):511-517
Galstaun G. A study of ossification as observed in
Indian subjects. Indian J Med Resear. 1937; 25:267-
Jit I, Kulkarni M. Times of appearance and fusion of
epiphysis at the medial end of the clavicle. Ind J Med
Res. 1976;64 (5):773-782
Kreitner KF, Schweden FJ, Riepert T, Nafe B, Thelen
M. Bone age determination based on the study of
medial extremity of clavicle. Eur Radiol. 1998; 8
(7):1116-1122
Franklin D, Flavel A. CT evaluation of timing for
ossification of the medial clavicle epiphysis in a
contemporary Western Australian population. Int J
Leg Med. 2015; 129(3):583-594
Paterson AM. The Human Sternum, William and
Norgate, London,1904; pp 42-67
McCormick WF. Sternal foramina in man. Am J
Forensic Med Pathol. 1981; 2: 249–252
Goodman LR, Teplick SK, Kay H. Computed
tomography of the normal sternum. Am J Roentgenol.
;141:219–223
Jit I, Bakshi V. Incidence of foramina in North Indian
sterna. J Anat Soc India 1984; 33:77–84
Stark P. Midline sternal foramen: CT demonstration.
J Comput Assist Tomogr. 1985; 9:489–490
Cooper PD, Stewart JH, McCormick67. Yekeler E, Tunaci M, Tunaci A, Dursum M, Acunas G.
Frequency of sternal variations and anomalies
evaluated by MDCT. Am J Radiol. 2006; 186:956–960
Stieve H, Hintzsche E. Ucher die Form des
menschlichen, Brustbeins. Z Morphol Anthropol.
(Translated in English); 23: 361–410
Ashley GT. Typing of the human sternum: the
influence of age and sex on its measurements. J
Forensic Med. 1956; 3:27–43
Moore MK, Stewart JH, McCormick WF.Anomalies
of the human chest plate area. Am J Forensic Med
Pathol. 1988; 9: 348–354
Aktan ZA, Savas R. Anatomic and HRCT
demonstration of midline sternal foramina. Turk J Med
Sci. 1998; 28:511–514
Stark P, Jaramillo D. CT of the sternum. Am J
Roentgenol. 1986; 147(1):72-77
Destouet JM, Gilula LA, Morphy WA, Sagel SS.
Computed tomography of the sterno-clavicular joint
and sternum. Radiol. 1981; 138:123-128.
Lucet L, LeLoet X, Menard JF, Mejjad O, Louvel JP,
Janvresse A, Dragon A. Computed tomography of
the normal streno-clavicular joint. Skeletal Radiol. 1996; 25(1):237-241
Jit I, Bakshi V. Time of fusion of the human
mesosternum with manubrium and xiphoid process.
Ind J Med Res. 1986; 83:322–331
Vyas PC, Saraswat PK, Pathak SK. Age of fusion of
sternal segments: a roentgenlogic study in individuals
of Jaipur. J Forensic Med Toxicol. 1999;16:17–18
Scheuer L, Black SM. The Juvenile Skeleton,
Academic Press, London,2004; pp 230–238
Birmingham A. The asymmetry of the sternum. Trans.
R. Acad. Ireland,1896; 14: 400–407
Rodriguez-Vazquez JF, Verdugo-Lopez S, Garrido
JM, Murakami G, Kim JH. Morphogenesis of the
manubrium of sternum in human embryos: a new
concept. Anat Rec (Hoboken), 2013; 296 (2): 279-289
Tyrell A. Skeletal non-metric traits and the assessment
of inter- and intra- population diversity: past problems
and future potential. In: Human Osteology in
Archaeology and Forensic Science, Cox M, ed.,2000;
London: Greenwich Medical Media
Freire S, Dunford A. Reliability study for scoring a
non-metric human osteological trait. J Collegiate
Anthropol. 2012; 4(1): 173-191
Singh J, Singh D, Pathak RK. Rhomboid fossa of
clavicle: is it reliable estimator of gender and age of
Northwest Indian subjects of Chandigarh region.
J Punjab Acad Forensic Med Toxicol. 2009; 9: 58-65
Carroll SE. A study of the nutrient foramina of humeral
diaphysis. J Bone Joint Surg. 1963; 45-B: 176-181
Ji L, Terazawa K, Tsukamoto T, Haga K. Estimation
of age from epiphyseal union of degrees of the sternal
end of the clavicle. Hokkaido Igaku Zasshi. 1997; 69
(1):104-111
Taylor HL. The sternal foramen: the possible forensic
misinterpretation of an anatomic abnormality. J
Forensic Sci. 1974; 19: 730–734.