Flowers: a potential source of human nutrition

Authors

  • Vivek Saurabh Department of Horticulture, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221 005, Uttar Pradesh, India Author
  • Kalyan Barman Department of Horticulture, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221 005, Uttar Pradesh, India Author

Keywords:

Edible flower, bioactive compound, medicinal value, nutrition

Abstract

Flowers, besides its cultural significance were being consumed since ancient times in many cultures around the world. They were used in different  culinary preparations or in various dishes as garnish or trimmings. In recent years, interest in consumption of fresh flowers has been renewed due their  nutritional value and medicinal properties. A number of flowers such as rose, marigold, chrysanthemum, garden nasturtium, etc. can be consumed  either as fresh or after drying or freezing. Apart from proving new colours, flavours and texture to the food, these edible flowers also serve as a  potential source of several bioactive compounds like phenolics, flavonoids, pigments, etc. which exert very high antioxidant activity. These flowers also  contain several minerals, the content of which are comparable with that of the fruits and vegetables. Further, recent studies have revealed that being a  rich source of antioxidants, consumption of these flowers is effective as anti-inflammatory, antimicrobial, hepatoprotective, anticancer and antidiabetic  agents. Therefore, flowers can be utilized as a source of new and promising foodstuff for wide application in human nutrition. 

References

Akihisa, T., Franzblau, S. G., Ukiya, M., Okuda, H., Zhang, F., Yasukawa, K., Suzuki, T., and Kimura, Y. 2005. Antitubercular activity of triterpenoids from asteraceae flowers. Biological and Pharmaceutical Bulletin, 28, 158-160.

Akihisa, T., Yasukawa, K., Oinuma, H., Kasahara, Y., Yamanouchi, S., Takido, M., Kumaki, K., and Tamura, T. 1996. Triterpene alcohols from the flowers of compositae and their anti-inflammatory effects. Phytochemistry, 43, 1255– 1260.

Bhattacharyya, S., Roychowdhury, A., and Ghosh, S. 2008. Lutein content, fatty acid composition and enzymatic modification of lutein from marigold (Tagetes patula L.) flower petals. Journal of the Indian Chemical Society, 85, 942-944.

Bilia, A. R., Salvini, D., Mazzi, G., and Vincieri, F. F. 2001. Characterization of calendula flower, milk-thistle fruit, and passion flower tinctures by HPLC-DAD and HPLC-MS. Chromatographia, 53, 210-215.

Cunningham, E. 2015. What nutritional contribution do edible flowers make? Journal of the Academy of Nutrition and Dietetics, 115(5), 856.

Dobson, H. E. M. 1988. Survey of pollen and pollenkitt lipids - chemical cues to flower visitors. American Journal of Botany, 75, 170-182.

Faizi, S., Siddiqi, H., Bano, S., Naz, A., Lubna, A., Mazhar, K., et al. 2008. Antibacterial and antifungal activities of different parts of Tagetes patula: preparation of patuletin derivatives. Pharmaceutical Biology, 46, 309-320.

Fu, M. R., and Mao, L. C. 2008. In vitro antioxidant activities of five cultivars of daylily flowers from China. Natural Product Research, 22, 584-591.

Fu, M. R., He, Z., Zhao, Y., Yang, J., and Mao, L. 2009. Antioxidant properties and involved compounds of daylily flowers in relation to maturity. Food Chemistry, 114, 1192-1197.

Garzón, G. A., and Wrolstad, R. E. 2009. Major anthocyanins and antioxidant activity of nasturtium flowers (Tropaelum majus). Food Chemistry, 114, 44–49.

Ghosh, D. 2013. A feast of flower. Resonance, 1004-1024.

Kaisoon, O., Konczak, I., and Siriamornpun, S. 2012. Potential health enhancing properties of edible flowers from Thailand. Food Research International, 46, 563–571.

Kelley, K. M., Cameron, A. C., Biernbaum, J. A., and Poff, K. L. 2003. Effect of storage temperature on the quality of edible flowers. Postharvest Biology and Technology, 27, 341-344.

Kelley, K. M., Cameron, A. C., Biernbaum, J. A., Poff, K. L., 2003. Effect of storage temperature on the quality of edible flowers. Postharvest Biology and Technology, 27, 341–344.

Kopec, K. 2004. Jedlekvety pro zpestrenijidelnicku. Vyziva a Potraviny, 59, 151-152.

Kopec, K., and Balik, J. 2008. Kvalitologiezahradnickychproduktu. Brno: MZLU. PP. 34-40.

Kumaran, A., and Karunakaran, R. J. 2007. Antioxidant activity of Cassia auriculata flowers. Fitoterapia, 78(1), 46-47.

Lara-Cortés, E., Martín-Belloso, O., Osorio-Díaz, P., Barrera-Necha, L. L., Sánchez-López, J. A., and Bautista-Baños, S. 2014. Antioxidant capacity nutritional and functional composition of edible dahlia flowers. Revista Chapingo SerieHorticultura, XX (1), 101–116.

Lara-Cortés, E., Osorio-Díaz, P., Jiménez-Aparicio, A., and Bautista-Baños, S. 2013. Contenidonutricional, propiedadesfuncionales y conservación de flores comestibles. Archivos Latinoamericanos De Nutricion, 63, 197– 208.

Loizzo, M. R., Pugliese, A., Bonesi, M., Tenuta, M. C., Menichini, F., Xiao, J., and Tundis, R. 2015. Edible flowers: a rich source of phytochemicals with antioxidant and hypoglycemic properties. Journal of Agricultural and Food Chemistry, 64(12), 2467-2474.

Lunau, K. 1995. Notes on the color of pollen. Plant Systematics and Evolution, 198, 235-252.

Lyra, C. C. G. V., Vieira, R. F., de Oliveira, C. B. A., Santos, S. C., Seraphin, J. C., and Ferri, P. H. 2008. Infraspectric variability in the essential oil composition of Lychnophoraericoides. Journal of the Brasil Chemical Society, 19, 842-848.

Melillo, L., 1994. Diuretic plants in the paintings of Pompeii. American Journal of Nephrology, 14, 423–425.

Mlcek, J., and Rop, O. 2011. Fresh edible flowers of ornamental plants– a new source of nutraceutical foods. Trends in Food Science and Technology, 22(10), 561-569.

Moeller, S. M., Jacques, P. F., and Blumberg, J. B. 2000. The potential role of dietary xanthophylls in cataract and age-related macular degeneration. Journal of the American College of Nutrition, 19, 522-527.

Navarro-González, I., González-Barrio, R., García-Valverde, V., Bautista-Ortín, A. B., and Periago, M. J. 2015. Nutritional composition and antioxidant capacity in edible flowers: characterisation of phenolic compounds by HPLC-DAD ESI/ MSn. International Journal of Molecular Sciences, 16(1), 805–822.

Nicolson, S. W., Nepi, M., and Pacini, E. 2007. Nectaries and nectar. Dordrecht: Springer.

Oh, S. Y., Du, S. H., Kim, S. J., and Hong, J. 2008. Rapid determination of floral aroma compounds of lilac blossom by fast gas chromatography combined with surface wave sensor. Journal of Chromatography, 1183, 170-178.

Osimitz, T. G., Franzosa, J. A., Maciver, D. R., and Maibach, H. I. 2006. Pyrethrum allergic contact dermatitis in humans Real? common?, or not documented? An evidence-based approach. Cutaneous and Ocular Toxicology, 25, 287- 308.

Parkinson, B., and Pacini, E. A. 1995. Comparison of tapetal structure and function in pteridophytes and angiosperms. Plant System and Evolution, 149, 155-185.

Pires, T. C., Dias, M. I., Barros, L., Ferreira, I. C. 2017. Nutritional and chemical characterization of edible petals and corresponding infusions: Valorization as new food ingredients. Food Chemistry, 220, 337–343.

Rop, O., Mlcek, J., Jurikova, T., Neugebauerova, J., and Vabkova, J. 2012. Edible flowers— a new promising source of mineral elements in human nutrition. Molecules, 17(6), 6672-6683.

Snodderly, D. M. 1995. Evidence for protection against age related macular degeneration by carotenoids and antioxidant vitamins. American Journal of Nutrition, 62, 1448-1462.

Sotelo A., López-García S., Basurto-Peña F. 2007. Content of nutrients and antinutrients in edible flowers of wild plants in Mexico. Plant Foods for Human Nutrition, 62, 133–138.

Sugawara, T., and Igarishi, K. 2009. Cultivar variation in flavonoid components and radical scavenging activity of polyphenol fractions among edible chrysanthemum flowers. Journal of the Japanese Society for Food Science and Technology, 56, 600-604.

Tanji, A., and Nassif, F. 1995. Edible weeds in Morocco. Weed Technology, 9(3), 617-620.

Tundis, R., Loizzo, M. R., and Menichini, F. 2010. Natural products as alpha-amylase and alpha-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: An update. Mini-Reviews in Medicinal Chemistry, 10, 315–331.

Ukiya, M., Akihisa, T., Tokuda, H., Suzuki, H., Mukainaka, T., Ichiishi, E., Yasukawa, K., Kasahara, Y., Nishino, H., 2002. Constituents of compositae plants: III. Anti-tumor promoting effects and cytotoxic activity against human cancer cell lines of triterpene diols and triols from edible chrysanthemum flowers. Cancer Letters, 177, 7–12.

Ukiya, M., Akihisa, T., Yasukawa, K., Tokuda, H., Suzuki, T., Kimura, Y., 2006. Anti-inflammatory, anti-tumor-promoting, and cytotoxic activities of constituents of marigold (Calendula officinalis) flowers. Journal of Natural Products, 69, 1692–1696.

Weber, M. 1996. The existence of a special exine coating in Geranium robertianum pollen. International Journal of Plant Sciences, 157, 195-202.

Wiermann, R., and Gubatz, S. 1992. Pollen wall and sporopollenin. International Review of Cytology, 140, 35-72.

Wongwattanasathien, O., Kangsadalampai, K., Tongyonk, L., 2010. Antimutagenicity of some flowers grown in Thailand. Food and Chemical Toxicology, 48, 1045–1051.

Yamagishi, M., Kishimoto, S., and Nakayama, M. 2010. Carotenoid composition and changes in expression of carotenoid biosynthetic genes in tepals of Asiatic hybrid lily. Plant Breeding, 129, 100-107.

Yusakawa, K., Akihisa, T., Inoue, Y., Tamura, T., Yamanouchi, S., and Takido, M. 1998. Inhibitory effect of the methanol extracts from compositae plants on 12-O-tetradecanoylphorbol-13-acetate-induced ear oedema in mice. Phytotherapy Research, 12, 484-487.

Yusakawa, K., Akihisa, T., Inoue, Y., Tamura, T., Yamanouchi, S., and Takido, M. 1998. Inhibitory effect of the methanol extracts from compositae plants on 12-O-tetradecanoylphorbol-13-acetate-induced ear oedema in mice. Phytotherapy Research, 12, 484-487.

Published

2020-01-30

How to Cite

Saurabh, V., & Barman , K. (2020). Flowers: a potential source of human nutrition. Journal of Postharvest Technology, 8(1), 75–81. Retrieved from https://acspublisher.com/journals/index.php/jpht/article/view/15317