An insight into the growth and nutritional requirements for ligninolytic enzymes production by Rigidoporus vinctus

Authors

  • Shehnaz Department of Environment Studies, Panjab University, Chandigarh, INDIA Author
  • I B Prasher Department of Environment Studies, Panjab University, Chandigarh, INDIA Author

Keywords:

Agaricomycete, ligninolytic enzymes,, Rigidoporus vinctus, white rot

Abstract

Rigidoporus vinctus (Berk. and Ryverdan) is a white-rot fungi that belongs to the Agaricomycete class of division Basidiomycota. It produces the  ligninolytic enzymes having many biotechnological applications such as the degradation of xenobiotic compounds and dyes. It is also used in inducing  agarwood formation and another application of this fungi is that it produces oil/lipids so it can also be used as biofuel. The study was carried out to  examine the in vitro growth and ligninolytic enzymes production by the fungus. The growth of fungi was examined with different physical parameters  (pH, temperature and days of incubation), in contrast the growth and ligninolytic enzymes activity was examined with respect to different carbon and  nitrogen sources. The optimum growth of fungi was observed with Richard’s medium at 32°C and with initial pH of 6.0 on 24th day of incubation.  Starch is the best carbon source for growth, whereas LiP and MnP activity both were maximum expressed in maltose and laccase activity was  maximum in glucose supplemented media. In the case of inorganic nitrogen compounds, Rigidoporus vinctus attained optimum growth with  ammonium sulphate and maximum activity for LiP, MnP and laccase were observed with ammonium chloride, ammonium sulphate and ammonium  oxalate supplemented media, respectively. In the case of organic nitrogen sources fungi expressed optimum growth with L-proline, whereas LiP, MnP  and laccase activity were maximum in DL-tryptophan, DL-valine and DL-aspartic acid supplemented media, respectively.

References

Archibald, F. S. 1992. A new assay for lignin-type peroxidases employing the dye azure B. Applied Environmental Microbiology, 58(9), 3110-3116.

Arora, D. S., and Gill, P. K. 2000. Laccase production by some white rot fungi under different nutritional conditions.Bioresource Technology, 73(3), 283-285.

Arora, D. S., and Gill, P. K. 2001. Effects of various media and supplements on laccase production by some white rot fungi. Bioresource Technology, 77(1), 89-91.

Arora, D. S., and Gill, P. K. 2005. Production of ligninolytic enzymes by Phlebia floridensis. World Journal of Microbiology and Biotechnology, 21(6-7), 1021-1028.

Atalla, M. M., Zeinab, H. K., Eman, R. H., Amani, A. Y., and Abeer, A. A. E. A. 2010. Screening of some marine-derived fungal isolates for lignin degrading enzymes (LDEs) production. Agriculture and Biology Journal of North America, 1(4), 591- 599.

Barros, L., Baptista, P., and Ferreira, I. C. 2006. Influence of the culture medium and pH on the growth of saprobic and ectomycorrhizal mushroom mycelia.

Bellettini, M. B., Fiorda, F. A., Maieves, H. A., Teixeira, G. L., Avila, S., Hornung, P. S., Junior, A. M., and Ribani, R. H. 2016. Factors affecting mushroom Pleurotus spp. Saudi Journal of Biological Sciences, 26, 633-646.

BrackerJr, C. E., and Butler, E. E. 1963. The ultrastructure and development of septa in hyphae of Rhizoctonia solani. Mycologia, 55(1), 35-58.

Chan Cupul, W., Heredia Abarca, G., Martinez Carrera, D., and Rodriguez Vazquez, R. 2014. Enhancement of ligninolytic enzyme activities in a Trametes maxima-Paecilomyces carneus co-culture: Key factors revealed after screening using a Plackett-Burman experimental design. Electronic Journal of Biotechnology, 17(3), 114-121.

Chauhan, A. S., Srivastava, N., Kehri, H. K., and Sharma, B. 2013. Optimization of culture conditions for some identified fungal species and stability profile of-galactosidase produced. Biotechnology Research International.

Chauhan, R. 2016. Optimization of physical parameters for the growth of a white rot fungus-Trametes versicolor. International Journal of Information Research and Review, 3(11), 3125-3128.

Chauhan, R. 2019. Nitrogen sources and trace elements influence Laccase and peroxidase enzymes activity of Grammothele fuligo. Vegetos, 32(3), 316-323.

Chen, X., Liu, Y., Yang, Y., Feng, J., Liu, P., Sui, C., and Wei, J. 2018. Trunk surface agarwood-inducing technique with Rigidoporus vinctus: an efficient novel method for agarwood production. PLoS One, 13(6), e0198111.

Cheng, Z., Wu, Q., Huang, J. B., Hu, C. G., and Wang, Z. L. 2013. Effects of carbon sources, nitrogen sources and minerals on mycelial growth of Cryphonectria parasitica. African Journal of Agricultural Research, 8(33), 4390-4395.

Claus, H. 2004. Laccases: structure, reactions, distribution. Micron, 35(1-2), 93-96.

Coll, P. M., Fernandez-Abalos, J. M., Villanueva, J. R., Santamaria, R., and Perez, P. 1993. Purification and characterization of a phenoloxidase (laccase) from the lignin-degrading basidiomycete PM1 (CECT 2971). Applied and Environmental Microbiology, 59(8), 2607-2613.

De Leon, A. M., Guinto, L. J. Z. G., De Ramos, P. D. V., andKalaw, S. P. 2017. Enriched cultivation of Lentinussquarrosulus (Mont.) Singer: A newly domesticated wild edible mushroom in the Philippines. Mycosphere, 8(3), 615-629.

De Leon, A. M., Orpilla, J. O. V., Cruz, K. V., Dulay, R. M. R., Kalaw, S. P., and De La Cruz, T. E. 2017. Optimization of mycelial growth and mycochemical screening of Lentinus sajor-caju (Fr.) from Banaue, Ifugao Province, Philippines. International Journal of Agricultural Technology, 13(7.3), 2549-2567.

deMoraes Catarino, A., Rodrigues, A. A., de Oliveira, M. G., and da Costa, D. H. S. G. 2018. Morphological aspects and effect of carbon sources in the physiology of Fusarium oxysporum f. sp. passiflorae. Emirates Journal of Food and Agriculture, 77-84.

Dhakar, K., and Pandey, A. 2013. Laccase production from a temperature and pH tolerant fungal strain of Trametes hirsuta (MTCC 11397). Enzyme Research.

Dhakar, K., Jain, R., Tamta, S., and Pandey, A. 2014. Prolonged laccase production by a cold and pH tolerant strain of Penicillium pinophilum (MCC 1049) isolated from a low temperature environment. Enzyme research.

Dhakar, K., Kooliyottil, R., Joshi, A., and Pandey, A. 2015. Simultaneous production of ligninolytic enzymes by a temperature and pH tolerant strain of Aspergillus niger under different cultural conditions. Indian Journal of Biotechnology, 14(January), 81-86.

Elisashvili, V., and Kachlishvili, E. 2009. Physiological regulation of laccase and manganese peroxidase production by white rot Basidiomycetes. Journal of Biotechnology, 144(1), 37-42.

Elisashvili, V., Kachlishvili, E., Asatiani, M. D., Darlington, R., and Kucharzyk, K. H. 2017. Physiological peculiarities of lignin modifying enzyme production by the white-rot basidiomycete Coriolopsis gallica strain BCC 142. Microorganisms, 5(4), 1-13.

Francisco, C. S., Ma, X., Zwyssig, M. M., McDonald, B. A., and Palma-Guerrero, J. 2019. Morphological changes in response to environmental stresses in the fungal plant pathogen Zymoseptoria tritici. Scientific reports, 9(1), 1-18.

Fu, R., Yin, C., Liu, Y., Ding, L., Zhu, J., Zheng, A., and Li, P. 2013.The influence of nutrient and environmental factors on mycelium growth and conidium of false smut Villosiclava virens. African Journal of Microbiology Research, 7(9), 825- 833.

Galhaup, C., Wagner, H., Hinterstoisser, B., and Haltrich, D. 2002. Increased production of laccase by the wood-degrading basidiomycete Trametes pubescens. Enzyme and Microbial Technology, 30(4), 529-536.

Garcia-Torreiro, M., Martínez-Patino, J. C., Gullon, B., Lu-Chau, T. A., Moreira, M. T., Lema, J. M., and Eibes, G. 2018. Simultaneous valorization and detoxification of the hemicellulose rich liquor from the organosolv fractionation. International Biodeterioration and Biodegradation, 126, 112-118.

Goh, S. M., Chan, M. Y., and Ong, L. G. A. 2017. Degradation potential of basidiomycetes Trametes ijubarskyi on Reactive violet 5 (RV 5) using urea as optimum nitrogen source. Biotechnology and Biotechnological Equipment, 31(4), 743-748.

Hamedi, A., Ghanati, F., andVahidi, H. 2012. Study on the effects of different culture conditions on the morphology of Agaricus blazei and the relationship between morphology and biomass or EPS production. Annals of microbiology, 62(2), 699- 707.

Hayer, K., Stratford, M., and Archer, D. B. 2014. Germination of Aspergillus niger conidia is triggered by nitrogen compounds related to L-amino acids. Applied and environmental microbiology, 80(19), 6046-6053.

Hoa, H. T., and Wang, C. L. 2015. The effects of temperature and nutritional conditions on mycelium growth of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology, 43(1), 14-23.

I.B., P., and Chauhan, R. 2015. Effect of carbon and nitrogen sources on the growth, reproduction and ligninolytic enzymes activity of Dictyoarthrinium synnematicum Somrith. Advances in Zoology and Botany, 3(2), 24-30.

Illuri, R., Kumar, M., Eyini, M., Veeramanikandan, V., Almaary, K. S., Elbadawi, Y. B., ...and Balaji, P. 2021. Production, partial purification and characterization of ligninolytic enzymes from selected basidiomycetes mushroom fungi. Saudi journal of biological sciences, 28(12), 7207-7218.

Imam, A., Suman, S. K., Kanaujia, P. K., and Ray, A. 2022. Biological machinery for polycyclic aromatic hydrocarbons degradation: A review. Bioresource Technology, 343, 126121.

Irshad, M., and Asgher, M. 2011. Production and optimization of ligninolytic enzymes by white rot fungus Schizophyllum commune IBL-06 in solid state medium banana stalks. African Journal of biotechnology, 10(79), 18234-18242.

Islam, F., and Ohga, S. 2013. Effects of media formulation on the growth and morphology of ectomycorrhizae and their association with host plant. International Scholarly Research Notices, 2013.

Janusz, G., Kucharzyk, K. H., Pawlik, A., Staszczak, M., and Paszczynski, A. J. 2013. Fungal laccase, manganese peroxidase and lignin peroxidase: gene expression and regulation. Enzyme and Microbial Technology, 52(1), 1-12.

Juwon, A. D., and Emmanuel, O. F. 2012. Experimental investigations on the effects of carbon and nitrogen sources on concomitant amylase and polygalacturonase production by Trichoderma viride BITRS-1001 in submerged fermentation. Biotechnology research international, 2012.

Kanwal, H. K., and Reddy, M. S. 2011. Effect of carbon, nitrogen sources and inducers on ligninolytic enzyme production by Morchella crassipes. World Journal of Microbiology and Biotechnology, 27(3), 687-691.

Kirk, P. M., Cannon, P. F., Minter, D. W., andStalpers, J. A. 2008. Dictionary of the fungi Wallingford. UK: CABI.

Koley, S., and Mahapatra, S. S. 2015.Evaluation of culture media for growth characteristics of Alternaria solani, causing early blight of tomato. Journal of Plant Pathology and Microbiology, 2015, 1-5.

Kumar, V. and Prasher, I.B. 2021. Ligninolytic enzymes production by endophytic fungus Diaporthe phaseolorum (Desm.) Sacc. under the influence of different carbon and nitrogen sources. Studies in Fungi, 6(1), 531–542.

Kumari, S., Kumar, D., andKhurana, S. P. 2022. Microbial degradation of pesticides: microbial potential for degradation of pesticides. In Development in Wastewater Treatment Research and Processes (pp. 41-67).Elsevier.

Landingin, H. R. R., Francisco, B. E., Dulay, R. M. R., Kalaw, S., and Reyes, R. 2020. Optimization of culture conditions for mycelial growth and basidiocarp production of Cyclocybe cylindracea (Maire). CLSU International Journal of Science and Technology, 4(1), 1-17.

Leonowicz, A., Wojtas-Wasilewska, M., Rogalski, J., and Luterek, J. 1991. Higher fungi as a potential feed and food source from lignocellulosic wastes. Studies in Environmental Science, 42, 229-255.

Levin, L., Melignani, E., and Ramos, A. M. 2010. Effect of nitrogen sources and vitamins on ligninolytic enzyme production by some white-rot fungi. Dye decolorization by selected culture filtrates. Bioresource technology, 101(12), 4554-4563.

Liu, L., Li, H., Liu, Y., Li, Y., and Wang, H. 2020. Whole Transcriptome Analysis Provides Insights Into the Molecular Mechanisms of Chlamydospore-Like Cell Formation in Phanerochaete chrysosporium. Frontiers in microbiology, 3052.

Mannaa, M., and Kim, K. D. 2017. Influence of temperature and water activity on deleterious fungi and mycotoxin production during grain storage. Mycobiology, 45(4), 240-254.

Martins, M. D., Guimaraes, M. W., de Lima, V. A., Gaglioti, A. L., Da-Silva, P. R., Kadowaki, M. K., and Knob, A. 2018. Valorization of passion fruit peel by-product: Xylanase production and its potential as bleaching agent for kraft pulp. Biocatalysis and Agricultural Biotechnology, 16, 172-180.

Mhlongo, S. I., Ezeokoli, O. T., Roopnarain, A., Ndaba, B., Sekoai, P. T., Habimana, O., and Pohl, C. H. 2021. The potential of single-cell oils derived from filamentous fungi as alternative feedstock sources for biodiesel production. Frontiers in Microbiology, 12, 57.

Mikiashvili, N., Elisashvili, V., Wasser, S., and Nevo, E. 2005. Carbon and nitrogen sources influence the ligninolytic enzyme activity of Trametes versicolor. Biotechnology Letters, 27(13), 955-959.

Min, G. J., Park, H. S., Lee, E. J., and Lee, C. J. 2020. Culture Characteristics and Optimal Conditions for Mycelial Growth of Calocybe indica. The Korean Journal of Mycology, 48(3), 273-284.

Mishra, A., Kumar, S., and Pandey, A. K. 2011. Laccase production and simultaneous decolorization of synthetic dyes in unique inexpensive medium by new isolates of white rot fungus. International Biodeterioration and Biodegradation, 65(3), 487-493.

Moller, E. M., Bahnweg, G., Sandermann, H., and Geiger, H. H. 1992.A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Research, 20(22), 6115.

Neelam, S., Chennupati, S., and Singh, S. 2013. Comparative studies on growth parameters and physio-chemical analysis of Pleurotus ostreatus and Pleurotus florida. Asian J. Plant Sci. Res, 3(1), 163-635.

Neifar, M., Jaouani, A., Ellouze-Ghorbel, R., Ellouze-Chaabouni, S., and Penninckx, M. J. 2009. Effect of culturing processes and copper addition on laccase production by the white-rot fungus Fomes fomentarius MUCL 35117. Letters in Applied Microbiology, 49(1), 73-78.

Ochsenreither, K., Glück, C., Stressler, T., Fischer, L., andSyldatk, C. 2016. Production strategies and applications of microbial single cell oils. Frontiers in microbiology, 7, 1539.

Patel, H., and Gupte, A. 2016. Optimization of different culture conditions for enhanced laccase production and its purification from Tricholoma giganteum AGHP. Bioresources and Bioprocessing, 3(11), 1-10.

Patrick, F., Mtui, G., Mshandete, A. M., and Kivaisi, A. 2011. Optimization of laccase and manganese peroxidase production in submerged culture of Pleurotus sajor-caju.African Journal of Biotechnology, 10(50), 10166-10177.

J. Postharvest Technol., 2022, 10(4): 1-19 16

Shehnaz and Prasher (Ligninolytic enzymes production by Rigidoporus vinctus)

Peralta, R. M., da Silva, B. P., Correa, R. C. G., Kato, C. G., Seixas, F. A. V., and Bracht, A. 2017. Enzymes from basidiomycetes - Peculiar and efficient tools for biotechnology. Biotechnology of Microbial Enzymes.In Goutam, B. (Eds.), 119-149.Academic Press.

Perez-Martin, J., and de Sena-Tomas, C. 2011. Dikaryotic cell cycle in the phytopathogenic fungus Ustilago maydis is controlled by the DNA damage response cascade. Plant Signaling and Behavior, 6(10), 1574-1577.

Pointing, S. B. 1999. Qualitative methods for the determination of lignocellulolytic enzyme production by tropical fungi. Fungal diversity, 2, 17-33.

Prasher, I. B. 2015. Wood-rotting non-gilled Agaricomycetes of Himalayas. Berlin: Springer.

Prasher, I. B., and Manju. 2018. Optimization of physical and nutritional factors for growth and ligninolytic activity of Porostereum Spadiceum , A noble white rot fungi from north-western Himalayas (India). IAETSD Journal for Advanced Research in Applied Sciences, 5(1),411-420.

Praveen, K., Viswanath, B., Usha, K. Y., Pallavi, H., Venkata Subba Reddy, G., Naveen, M., and Rajasekhar Reddy, B. 2011. Lignolytic enzymes of a mushroom Stereum ostrea isolated from wood logs. Enzyme Research, 2011.

Qiu, Z., Wu, X., Zhang, J., and Huang, C. 2018. High-temperature induced changes of extracellular metabolites in Pleurotus ostreatus and their positive effects on the growth of Trichoderma asperellum. Frontiers in Microbiology, 9, 10.

Schneider, W. D. H., Fontana, R. C., Mendonça, S., de Siqueira, F. G., Dillon, A. J. P., and Camassola, M. (2018). High level production of laccases and peroxidases from the newly isolated white-rot basidiomycete Marasmiellus palmivorus VE111 in a stirred-tank bioreactor in response to different carbon and nitrogen sources. Process Biochemistry, 69, 1- 11.

Sharma, M., and Sharma, M. 2011. Influence of culture media on mycelial growth and sporulation of some soil dermatophytes compared to their clinical isolates. Journal of Microbiology and Antimicrobials, 3(8), 196-200.

Singh, G., and Dwivedi, S. K. 2020. Decolorization and degradation of Direct Blue-1 (Azo dye) by newly isolated fungus Aspergillus terreus GS28, from sludge of carpet industry. Environmental Technology and Innovation, 18, 100751.

Sou, H. D., Ryoo, R., Ka, K. H., and Park, H. 2017. The mycelial growth and ligninolytic enzyme activity of cauliflower mushroom (Sparassis latifolia). Forest science and technology, 13(4), 158-163.

Stajic, M., Persky, L., Friesem, D., Hadar, Y., Wasser, S. P., Nevo, E., andVukojević, J. 2006. Effect of different carbon and nitrogen sources on laccase and peroxidases production by selected Pleurotus species. Enzyme and microbial technology, 38(1-2), 65-73.

Usha, K. Y., Praveen, K., and Reddy, B. R. 2014. Enhanced production of ligninolytic enzymes by a mushroom Stereum ostrea. Biotechnology Research International, 2014, 1-9.

Vaithanomsat, P., Apiwatanapiwat, W., Petchoy, O., and Chedchant, J. 2010. Production of ligninolytic enzymes by white-rot fungus Datronia sp. KAPI0039 and their application for reactive dye removal. International Journal of chemical engineering, 2010.

vanBrenk, B., and Wösten, H. A. 2021. A screening method for decoloration of xenobiotic dyes by fungi. Journal of Microbiological Methods, 188, 106301.

Varshney, A. K., Mohan, M. K., Vidyarthi, A. S., Nigam, V. K., and Ghosh, P. 2013. Statistical optimization of medium components to increase the manganese peroxidase productivity by Phanerochaete chrysosporium NCIM 1197. Biotechnology and bioprocess engineering, 18(6), 1176-1184.

Viswanath, B., Rajesh, B., Janardhan, A., Kumar, A. P., and Narasimha, G. 2014. Fungal laccases and their applications in bioremediation. Enzyme research, 2014.

Voberkova, S., Solcany, V., Vrsanska, M., and Adam, V. 2018.Immobilization of ligninolytic enzymes from white-rot fungi in cross-linked aggregates. Chemosphere, 202, 694-707.

Vylkova, S. 2017. Environmental pH modulation by pathogenic fungi as a strategy to conquer the host. PLoS pathogens, 13(2), e1006149.

Walker, G. M., and White, N. A. 2017. Introduction to fungal physiology. Fungi: biology and applications, 1-35. Webster, J., and Weber, R. 2007. Introduction to fungi. Cambridge university press.

Xavier, A. M. R. B., Evtuguin, D. V., Ferreira, R. M. P., and Amado, F. L. 2001. Laccase production for lignin oxidative activity. Proceedings of the 8th International Conference on Biotechnology in the Pulp and Paper Industry, 4-8.

Yang, J., Li, W., Ng, T. B., Deng, X., Lin, J., and Ye, X. 2017. Laccases: production, expression regulation, and applications in pharmaceutical biodegradation. Frontiers in Microbiology, 8(832), 1-24.

Yang, Y., Wei, F., Zhuo, R., Fan, F., Liu, H., Zhang, C., Ma, Li, Jiang, M., Zhang, X. 2013. Enhancing the laccase production and laccase gene expression in the white-rot fungus Trametes velutina 5930 with great potential for biotechnological applications by different metal ions and aromatic compounds.PLoS One, 8(11), 1-24.

Zerva, A., Zervakis, G. I., Christakopoulos, P., and Topakas, E. 2017. Degradation of olive mill wastewater by the induced extracellular ligninolytic enzymes of two wood-rot fungi. Journal of Environmental Management, 203, 791-798.

Zhang, H., Zhang, J., Zhang, X., and Geng, A. 2018. Purification and characterization of a novel manganese peroxidase from white-rot fungus Cerrena unicolor BBP6 and its application in dye decolorization and denim bleaching.Process Biochemistry, 66, 222-229.

Zhang, J., and Elser, J. J. 2017. Carbon: nitrogen: phosphorus stoichiometry in fungi: a meta-analysis. Frontiers in microbiology, 8, 1281.

Zhao, Z., Shao, S., Liu, N., Liu, Q., Jacquemyn, H., and Xing, X. 2021. Extracellular enzyme activities and carbon/nitrogen utilization in mycorrhizal fungi isolated from epiphytic and terrestrial orchids. Frontiers in Microbiology, 3953.

Zhu, C., Bao, G., and Huang, S. 2016. Optimization of laccase production in the white-rot fungus Pleurotus ostreatus (ACCC 52857) induced through yeast extract and copper. Biotechnology and Biotechnological Equipment, 30(2), 270-276.

Published

2022-09-30

How to Cite

Shehnaz, & Prasher, I.B. (2022). An insight into the growth and nutritional requirements for ligninolytic enzymes production by Rigidoporus vinctus . Journal of Postharvest Technology, 10(4), 1–19. Retrieved from https://acspublisher.com/journals/index.php/jpht/article/view/15116