Molecular basis of biotic and abiotic stress management attributes of plant growth promoting rhizobacteria

Authors

  • Tripta Jain Microbial Research Laboratory, Department of Botany, University College of Science, Mohanlal Sukhadia University, Udaipur, India Author
  • Pushpa Gehlot Microbial Research Laboratory, Department of Botany, University College of Science, Mohanlal Sukhadia University, Udaipur, India Author
  • Jyoti Yadav Microbial Research Laboratory, Department of Botany, University College of Science, Mohanlal Sukhadia University, Udaipur, India Author
  • Deepali Chittora Microbial Research Laboratory, Department of Botany, University College of Science, Mohanlal Sukhadia University, Udaipur, India Author

Keywords:

PGPR, abiotic, biotic, stress, ISR

Abstract

Food scarcity is becoming a global issue as the world's population grows. New agricultural strategies that help enhance agricultural crop  production and productivity are urgently needed to meet the growing food demand of the world's population. There are various stresses  prevalent that prominently reduce the plant productivity. These stresses can be either biotic or abiotic. To ensure food supply to growing  population worldwide, the damage caused by these stresses should be minimized. Plant growth promoting rhizobacteria (PGPR) are root 

colonizing non-pathogenic bacteria, which found surrounding the roots and have beneficial effects on growth of plant. PGPR act as a source  of hormones, vitamins and growth factors that enhance plant growth and yield. PGPR could be a alternative tool for sustainable agriculture  as they can induce resistance against various biotic and abiotic stresses. Some PGPR increases tolerance against abiotic stresses like  drought, salinity, temperature, oxidative stress, nutrient deficiency and metal toxicity. Several activities of PGPRs such as production of  antibiotic compounds, bacteriocins, synthesis and secretion of cell wall degrading enzymes, induction of systemic resistance (ISR) and  production of volatile organic compounds are effective in control of many biotic stresses such as plant pathogens. Several PGPR strains  such as Pseudomonas spp., Bacillus spp. are proved to be an effective biocontrol agents against plant pathogens. This review emphasized  on the role of PGPR for management of various biotic and abiotic stress.  

References

Abbasi, S., Sadeghi, A., Omidvari, M., and Tahan, V. 2021. The stimulators and responsive genes to induce systemic resistance against pathogens: An exclusive focus on tomato as a model plant. Biocatalysis and Agricultural Biotechnology, 33: 101993.

Abou-Shanab, R. I., Delorme, T. A., Angle, J. S., Chaney, R. L., Ghanem, K., Moawad, H., and Ghozlan, H. A. 2003. Phenotypic characterization of microbes in the rhizosphere of Alyssum murale. International Journal of Phytoremediation, 5(4): 367-379.

Ahn, Y. O., Kim, S. H., Lee, J., Kim, H., Lee, H. S., and Kwak, S. S. 2012. Three Brassica rapa metallothionein genes are differentially regulated under various stress conditions. Molecular Biology Reports, 39 (3): 2059-2067.

Ali, A., Maggio, A., Bressan, R. A., and Yun, D. J. 2019. Role and functional differences of HKT1-type transporters in plants under salt stress. International journal of molecular sciences, 20 (5): 1059.

Anita, B., and Samiyappan, R. 2012. Induction of systemic resistance in rice by Pseudomonas fluorescens against rice root knot nematode Meloidogyne graminicola. Journal of Biopesticides, 5: 53.

Anitha, A., andRabeeth, M. 2010. Degradation of fungal cell walls of phytopathogenic fungi by lytic enzyme of Streptomyces griseus. African Journal of Plant Science, 4(3): 61-66.

Apse, M. P., Aharon, G. S., Snedden, W. A., and Blumwald, E. 1999. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science, 285 (5431): 1256-1258.

Asch, F., and Padham, J. L. 2005. Root associated bacteria suppress symptoms of iron toxicity in lowland rice. The global food and product chain–dynamics, innovations, conflicts, strategies. MDD GmbH, Stuttgart: 276.

Baniwal, S. K., Bharti, K., Chan, K. Y., Fauth, M., Ganguli, A., Kotak, S., and von Koskull-DÖring, P. 2004. Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. Journal of Biosciences, 29(4): 471-487.

Barassi, C. A., Ayrault, G., Creus, C. M., Sueldo, R. J., andSobrero, M. T. 2006. Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Scientia Horticulturae, 109(1): 8-14.

Barka, E., Nowak, J., and Clement, C. 2006. Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl. Environ. Microbiol., 72:7246-7252.

Bensalim, S., Nowak, J., and Asiedu, S. K. 1998. A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. american Journal of Potato Research 1998, 75(3): 145-152.

Bhattacharyya, P. N., and Jha, D. K. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology, 28(4): 1327-1350.

Bleecker, A. B., Estelle, M. A., Somerville, C., andamp, Kende, H.1988. Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science, 241(4869): 1086-1089.

Blumer, C., and Haas, D. 2000. Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Archives of Microbiology, 173(3): 170-177.

Budi, S. W., Van Tuinen, D., Arnould, C., Dumas-Gaudot, E., Gianinazzi-Pearson, V., and Gianinazzi, S. 2000. Hydrolytic enzyme activity of Paenibacillus sp. strain B2 and effects of the antagonistic bacterium on cell integrity of two soil borne pathogenic fungi. Applied Soil Ecology, 15(2): 191-199.

Casanovas, E. M., Barassi, C. A., and Sueldo, R. J., 2002. Azospirillum inoculation mitigates water stress effects in maize seedlings. Cereal Research Communications, 30(3): 343-350.

Cascales, E., Buchanan, S. K., Duché, D., Kleanthous, C., Lloubes, R., Postle, K., and Cavard, D. 2007. Colicin biology. Microbiology and Molecular Biology Reviews, 71(1): 158-229.

Chaiharn, M., Chunhaleuchanon, S., and Lumyong, S. 2009. Screening siderophore producing bacteria as potential biological control agent for fungal rice pathogens in Thailand. World Journal of Microbiology and Biotechnology, 25(11): 1919-1928.

Chin-A-Woeng, T. F., Bloemberg, G. V., andLugtenberg, B. J. 2003. Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytologist, 157(3): 503-523.

Chinnusamy, V., Zhu, J., and Zhu, J. K. 2007. Cold stress regulation of gene expression in plants. Trends In Plant Science, 12(10): 444-451.

Cho, S. M., Kang, B. R., Han, S. H., Anderson, A. J., Park, J. Y., Lee, Y. H., ... and Kim, Y. C. 2008. 2R, 3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 21(8): 1067-1075.

De Medeiros, J. E., Mariano, R. D. L., Pedrosa, E. M., and da Silveira, E. B. 2009. Inconsistency of the biological control of Meloidogyne incognita race 2 in melon by endophytic bacteria. Horticultura Brasileira,, 27(3): 319-324.

De Souza, E. R., dos Santos Freire, M. B. G., da Cunha, K. P. V., do Nascimento, C. W. A., Ruiz, H. A., and Lins, C. M. T. 2012. Biomass, anatomical changes and osmotic potential in Atriplex nummularia Lindl. cultivated in sodic saline soil under water stress. Environmental and Experimental Botany, 82: 20-27.

De Souza, J. T., De Boer, M., De Waard, P., Van Beek, T. A., andRaaijmakers, J. M. 2003. Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Applied and Environmental Microbiology, 69(12): 7161-7172.

DeLaat, A. M., and amp, van Loon, L. C. 1982. Regulation of ethylene biosynthesis in virus-infected tobacco leaves: II. Time course of levels of intermediates and in vivo conversion rates. Plant Physiology 1982, 69(1): 240-245.

Dimkpa, C. O., Merten, D., Svatoš, A., Büchel, G., and Kothe, E. 2009. Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. Journal of Applied Microbiology, 107(5): 1687-1696.

Doornbos, R. F., Geraats, B. P., Kuramae, E. E., Van Loon, L. C., and Bakker, P. A. 2011. Effects of jasmonic acid, ethylene, and salicylic acid signaling on the rhizosphere bacterial community of Arabidopsis thaliana. Molecular Plant Microbe Interactions, 24(4): 395-407.

Driedonks, N., Rieu, I., andVriezen, W. H. 2016. Breeding for plant heat tolerance at vegetative and reproductive stages. Plant Reproduction, 29(1): 67-79.

Drigo, B., Kowalchuk, G. A., and Van Veen, J. A. 2008. Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere. Biology and Fertility of Soils, 44(5): 667- 679.

Duijff, B. J., Pouhair, D., Olivain, C., Alabouvette, C., andamp, Lemanceau, P. 1998. Implication of systemic induced resistance in the suppression of fusarium wilt of tomato by Pseudomonas fluorescens WCS417r and by nonpathogenic Fusarium oxysporum Fo47. European Journal of Plant Pathology, 104(9): 903-910.

Duijff, B. J., Recorbet, G., Bakker, P. A., Loper, J. E., and Lemanceau, P.1999. Microbial antagonism at the root level is involved in the suppression of Fusarium wilt by the combination of nonpathogenic Fusarium oxysporum Fo47 and Pseudomonas putida WCS358. Phytopathology, 89(11): 1073-1079.

Egamberdiyeva, D. 2007. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Applied Soil Ecology, 36(2-3): 184-189.

Etesami, H., Mirseyed Hosseini, H., and Alikhani, H. A. 2014. Bacterial biosynthesis of 1-aminocyclopropane-1-caboxylate (ACC) deaminase, a useful trait to elongation and endophytic colonization of the roots of rice under constant flooded conditions. Physiology and Molecular Biology of Plants, 20(4): 425-434.

Farooq, M., Wahid, A., Kobayashi, N. S. M. A., Fujita, D. B. S. M. A., and Basra, S. M. A. 2009. Plant drought stress: effects, mechanisms and management. In Sustainable agriculture:153-188 Springer, Dordrecht.

Fernandez, O., Theocharis, A., Bordiec, S., Feil, R., Jacquens, L., Clément, C., and Barka, E. A. 2012. Burkholderia phytofirmansPsJN acclimates grapevine to cold by modulating carbohydrate metabolism. Molecular Plant-Microbe Interactions, 25(4): 496-504.

Fernando, W. G. D., Ramarathnam, R., and De Kievit, T. 2007. Bacterial Weapons of Fungal Destruction: Phyllosphere Targeted Biological Control of Plant Diseases, with Emphasis on Sclerotinia Stem Rot and Blackleg Diseases in Canola (Brassica napus L.). Environmental and Microbial Relationships, 4: 189.

Fischer G, Shah M, Van Velthuizen H. 2002. Climate change and agricultural vulnerability, world summit on sustainable development. Johannesburg.

Gao, S., Ouyang, C., Wang, S., Xu, Y., Tang, L., and Chen, F. 2008. Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedlings. Plant and Soil Environment, 54(9): 374-381.

Ghorai, S., Pal, K. K., and Dey, R. 2015.Alleviation of salinity stress in groundnut by application of PGPR.

Glazebrook, J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Reviews in Phytopathology, 43:205-227.

Glenn, E. P., Brown, J. J., and Blumwald, E. 1999. Salt tolerance and crop potential of halophytes. Critical reviews in plant sciences, 18(2): 227-255.

Glick, B. R., Cheng, Z., Czarny, J., and Duan, J. 2007. Promotion of plant growth by ACC deaminase-producing soil bacteria. New perspectives and approaches in plant growth-promoting Rhizobacteria Research: 329-339.

Goh, H. F., and Philip, K. 2015. Purification and characterization of bacteriocin produced by Weissella confusa A3 of dairy origin. PloS one, 10(10): e0140434.

Gouesbet, G., Jan, G., and Boyaval, P. 2002.Two-dimensional electrophoresis study of Lactobacillus delbrueckii subsp. Bulgaricus thermo tolerance. Applied and Environmental Microbiology, 68(3): 1055-1063.

Guo, P., Baum, M., Grando, S., Ceccarelli, S., Bai, G., Li, R., and Valkoun, J. 2009. Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. Journal of Experimental Botany, 60(12): 3531-3544.

Gupta, A., Bano, A., Rai, S., Mishra, R., Singh, M., Sharma, S., and Pathak, N. 2022. Mechanistic insights of plant-microbe interaction towards drought and salinity stress in plants for enhancing the agriculture productivity. Plant Stress: 100073.

Gupta, A., Mishra, R., Rai, S., Bano, A., Pathak, N., Fujita, M., and Hasanuzzaman, M. 2022. Mechanistic Insights of Plant Growth Promoting Bacteria Mediated Drought and Salt Stress Tolerance in Plants for Sustainable Agriculture. International Journal of Molecular Sciences , 23(7): 3741.

Gururani, M. A., Upadhyaya, C. P., Baskar, V., Venkatesh, J., Nookaraju, A., and Park, S. W. 2013. Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. Journal of Plant Growth Regulation, 32(2): 245-258.

Haas, D., and Défago, G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology, 3(4): 307-319.

Habib, I., Shahzad, K., Rauf, M., Ahmad, M., Alsamadany, H., Saeed, N. A., and Fahad, S. 2022. Dehydrin responsive HVA1 driven inducible gene expression enhanced salt and drought tolerance in wheat. Plant Physiology and Biochemistry.

Haider, S., Iqbal, J., Naseer, S., Yaseen, T., Shaukat, M., Bibi, H., and Mahmood, T. 2021. Molecular mechanisms of plant tolerance to heat stress: current landscape and future perspectives. Plant Cell Reports, 40(12): 2247-2271.

Hamdia, M. A. E. S., Shaddad, M. A. K., and Doaa, M. M. 2004. Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regulation, 44(2): 165-174.

Han, H. S., and Lee, K. D. 2005. Plant growth promoting rhizobacteria effect on antioxidant status, photosynthesis, mineral uptake and growth of lettuce under soil salinity. Res J Agric BiolSci, 1(3): 210-215.

Hill, S., Hammer, P. E., and Ligon, J. 2018.The role of antifungal metabolites in biological control of plant disease. Technology Transfer of Plant Biotechnology: 41-48.

Hong, W. J., Jiang, X., Ahn, H. R., Choi, J., Kim, S. R., and Jung, K. H. 2020. Systematic analysis of cold stress response and diurnal rhythm using transcriptome data in rice reveals the molecular networks related to various biological processes. International journal of molecular sciences, 21(18): 6872.

Hoque, M., Hannan, A., Imran, S., Paul, N. C., Mondal, M., Sadhin, M., and Rhaman, M. S. 2022. Plant Growth-Promoting Rhizobacteria-Mediated Adaptive Responses of Plants under Salinity Stress. Journal of Plant Growth Regulation: 1-20.

Hussain, T. M., Ch, T., Hazara, M., Sultan, Z., Saleh, B. K., and Gopal, G. R. 2008. Recent advances in salt stress biology a review. Biotechnology and Molecular Biology Reviews, 3(1): 8-13.

Iavicoli, A., Boutet, E., Buchala, A., andamp, Métraux, J. P. 2003. Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Molecular Plant-Microbe Interactions, 16(10): 851-858.

Jonathan, E. I., Raguchander, T., Bagam, M. Z., and Sundaramoorthy, S. 2009. Field Efficacy of Biocontrol Agents for the Management of Root Knot Nematode Meloidogyne incognita (KofoidandWhite) Chitw. And Reniform Nematode Rotylenchulus reniformis (Linford and Oliviera) in Tomato. Journal of Biological Control, 23(3): 311-316.

Juan, C. A., Pérez de la Lastra, J. M., Plou, F. J., and Pérez-Lebeña, E. 2021. The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. International Journal of Molecular Sciences, 22(9) 4642.

Kang, S. M., Khan, A. L., Waqas, M., You, Y. H., Hamayun, M., Joo, G. J., and Lee, I. J. 2015. Gibberellin-producing Serratia nematodiphila PEJ1011 ameliorates low temperature stress in Capsicum annuum L. European Journal of Soil Biology, 68: 85-93.

Kanneganti, V., and Gupta, A. K. 2008.Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Molecular Biology, 66(5): 445-462.

Kannojia, P., Choudhary, K. K., Srivastava, A. K., and Singh, A. K. 2019. PGPR bioelicitors: induced systemic resistance (ISR) and proteomic perspective on biocontrol. In PGPR amelioration in sustainable agriculture, 67-84. Woodhead Publishing.

Karimi, B., Maron, P. A., Chemidlin-Prevost Boure, N., Bernard, N., Gilbert, D., and Ranjard, L. 2017. Microbial diversity and ecological networks as indicators of environmental quality. Environmental Chemistry Letters, 15(2): 265-281.

Kennedy, R., Veena, V., Naik, P. R., Lakshmi, P., Krishna, R., Sudharani, S., andSakthivel, N. 2015. Phenazine-1- carboxamide (PCN) from Pseudomonas sp. strain PUP6 selectively induced apoptosis in lung (A549) and breast (MDA MB-231) cancer cells by inhibition of antiapoptotic Bcl-2 family proteins. Apoptosis, 20(6): 858-868.

Khan, A., Sayyed, R. Z., and Seifi, S. 2019. Rhizobacteria: Legendary Soil Guards in Abiotic Stress Management. In Plant Growth Promoting Rhizobacteria for Sustainable Stress Management: 327-343 Springer, Singapore.

Kloepper, J. W. 1978. Plant growth-promoting rhizobacteria on radishes. In Proc. of the 4th Internet. Conf. on Plant Pathogenic Bacter, Station de PathologieVegetale et al Phytobacteriologie, INRA, Angers, France ,Vol. 2: pp. 879-882.

Knoester, M., Pieterse, C. M., Bol, J. F., and amp, Van Loon, L. C. 1999. Systemic resistance in Arabidopsis induced by rhizobacteria requires ethylene-dependent signaling at the site of application. Molecular Plant-Microbe Interactions, 12(8): 720-727.

Kumar, K. V., Srivastava, S., Singh, N., and Behl, H. M. 2009. Role of metal resistant plant growth promoting bacteria in ameliorating fly ash to the growth of Brassica juncea. Journal of Hazardous Materials, 170(1): 51-57.

Liu, R., Dai, M., Wu, X., Li, M., and Liu, X. 2012. Suppression of the root-knot nematode (Meloidogyne incognita (Kofoid and White) Chitwood) on tomato by dual inoculation with arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria. Mycorrhiza, 22(4): 289-296.

Liu, W., Sikora, E., and Park, S. W. 2020. Plant growth-promoting rhizobacterium, Paenibacillus polymyxa CR1, upregulates dehydration-responsive genes, RD29A and RD29B, during priming drought tolerance in arabidopsis. Plant Physiology and Biochemistry, 156: 146-154.

Marrugo-Negrete, J., Pinedo-Hernández, J., and Díez, S. 2017.Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environmental research,154.

Mavrodi, D. V., Parejko, J. A., Mavrodi, O. V., Kwak, Y. S., Weller, D. M., Blankenfeldt, W., andThomashow, L. S. 2013. Recent insights into the diversity, frequency and ecological roles of phenazines in fluorescent Pseudomonas spp. Environmental Microbiology, 15(3): 675-686.

Mayak, S., Tirosh, T., and Glick, B. R. 2004. Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Science, 166(2):525-530.

McKenzie, F. C., and Williams, J. 2015. Sustainable food production: constraints, challenges and choices by 2050. Food Security,7 (2):221-233.

McLellan, C. A., Turbyville, T. J., Wijeratne, E. K., Kerschen, A., Vierling, E., Queitsch, C., .and Gunatilaka, A. L. 2007. A rhizosphere fungus enhances Arabidopsis thermo tolerance through production of an HSP90 inhibitor. Plant Physiology, 145(1): 174-182.

Meena, P. 2010. Biology and Biological Control of Heterodera cajani Infecting Pigeon pea. The Journal of Indian Botanical Society, 89(3and4): 312-319.

Mhatre, P. H., Karthik, C., Kadirvelu, K., Divya, K. L., Venkatasalam, E. P., Srinivasan, S., and Shanmuganathan, R. 2019. Plant growth promoting rhizobacteria (PGPR): A potential alternative tool for nematodes bio-control. Biocatalysis and Agricultural Biotechnology, 17: 119-128.

Mishra, S. K., Tripp, J., Winkelhaus, S., Tschiersch, B., Theres, K., Nover, L., and Scharf, K. D. 2002. In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes and Development, 16(12): 1555-1567.

Møller, I. S., and Tester, M. 2007. Salinity tolerance of Arabidopsis: a good model for cereals?. Trends in Plant Science, 12(12): 534-540.

Mukhopadhyay, A., Vij, S., and Tyagi, A. K. 2004. Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proceedings of the National Academy of Sciences, 101(16): 6309-6314.

Nadeem, S.M., Z.A. Zahir, M. Naveed and M. Arshad. 2007. Preliminary investigation on inducing salt tolerance in maize through inoculation with Rhizobacteria containing ACC- deaminase activity. Can. Journal of Microbiology, 53: 1141-1149.

Nandakumar, R., Babu, S., Viswanathan, R., Raguchander, T., and Samiyappan, R. 2001.Induction of systemic resistance in rice against sheath blight disease by Pseudomonas fluorescens. Soil Biology and Biochemistry, 33(4-5): 603- 612.

Nandi, M., Selin, C., Brassinga, A. K. C., Belmonte, M. F., Fernando, W. D., Loewen, P. C., and De Kievit, T. R. 2015 Pyrrolnitrin and hydrogen cyanide production by Pseudomonas chlororaphis strain PA23 exhibits nematicidal and repellent activity against Caenorhabditiselegans. PloS one, 10(4): e0123184.

Narasimhamurthy, H. B., Ravindra, H., Sehgal, M., Ekabote, S. D., andGanapathi, G. 2017. Bio-management of rice root knot nematode (Meloidogyne graminicola). Journal of Entomology and Zoology Studies, 5(4): 1433-1439.

Narayanasamy, P. 2013. Abiotic Biological Control Agents for Crop Disease Management. In Biological Management of Diseases of Crops:511-632 Springer, Dordrecht.

Niu, X., Bressan, R.A., Hasegawa, P.M., Pardo, J.M., 1995. Ion homeostasis in NaCl stress environments. Plant Physiology, 109: 735–742.

Nover, L., Bharti, K., Döring, P., Mishra, S. K., Ganguli, A., and Scharf, K. D. 2001. Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress and Chaperones, 6(3): 177.

Oak, S. J., andJha, R. 2019. The effects of probiotics in lactose intolerance: A systematic review. Critical Reviews in Food Science and Nutrition, 59(11): 1675-1683.

Ongena, M., Duby, F., Rossignol, F., Fauconnier, M.L., Dommes, J., and Thonart, P. 2004. Stimulation of the lipoxygenase pathway is associated with systemic resistance induced in bean by a nonpathogenic Pseudomonas strain. Molecular Plant-Microbe Interaction, 17: 1009–1018.

Örvar, B. L., Sangwan, V., Omann, F., and Dhindsa, R. S. 2000. Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. The Plant Journal, 23(6): 785-794.

Park, J. H., Lamb, D., Paneerselvam, P., Choppala, G., Bolan, N., and Chung, J. W. 2011. Role of organic amendments on enhanced bioremediation of heavy metal (loid) contaminated soils. Journal of Hazardous Materials, 185(2-3): 549- 574.

Park, K., Park, J. W., Lee, S. W., and Balaraju, K. 2013. Disease suppression and growth promotion in cucumbers induced by integrating PGPR agent Bacillus subtilis strain B4 and chemical elicitor ASM. Crop Protection, 54: 199-205.

Pieterse, C. M., Van Wees, S. C., Hoffland, E., Van Pelt, J. A., andamp, Van Loon, L. C. 1996. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. The Plant Cell, 8(8): 1225-1237.

Pieterse, C. M., Van Wees, S. C., Van Pelt, J. A., Knoester, M., Laan, R., Gerrits, H., ... and Van Loon, L. C. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. The Plant Cell, 10(9): 1571-1580.

Pishchik, V. N., Vorobyev, N. I., Chernyaeva, I. I., Timofeeva, S. V., Kozhemyakov, A. P., Alexeev, Y. V., and Lukin, S. M. 2002. Experimental and mathematical simulation of plant growth promoting rhizobacteria and plant interaction under cadmium stress. Plant and Soil, 243(2): 173-186.

Premachandra, D., Hudek, L., and Brau, L. 2016 Bacterial modes of action for enhancing of plant growth. Journal of Biotechnology and Biomaterials, 6(3): 1-8.

Ramadass, M., and Thiagarajan, P. 2021. Current Trends and Emerging Technologies for Pest Control Management of Rice (Oryza sativa) Plants. Environmental Biotechnology, 4: 125-179.

Ramamoorthy, V., Viswanathan, R., Raguchander, T., Prakasam, V., and Samiyappan, R. 2001. Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Protection, 20(1): 1-11.

Rao, M. S., Kamalnath, M., Umamaheswari, R., Rajinikanth, R., Prabu, P., Priti, K., ...and Gopalakrishnan, C. 2009. Bacillus subtilis IIHR BS-2 enriched vermicompost controls root knot nematode and soft rot disease complex in carrot. Scientia Horticulturae, 218: 56-62.

Rashad, F. M., Fathy, H. M., El-Zayat, A. S., and Elghonaimy, A. M. 2015. Isolation and characterization of multifunctional Streptomyces species with antimicrobial, nematicidal and phytohormone activities from marine environments in Egypt. Microbiological Research, 175: 34-47.

Rashid, M., Chaturvedi, S., Vaishnav, A., and Choudhary, D. K. 2021. Use of PGPR to Optimize Soil and Crop Productivity under Abiotic Stress. In Plant, Soil and Microbes in Tropical Ecosystems (pp. 227-249) Springer, Singapore.

Raza, M. A. S., Haider, I., Farrukh Saleem, M., Iqbal, R., Usman Aslam, M., Ahmad, S., and Abbasi, S. H. 2021. Integrating biochar, rhizobacteria and silicon for strenuous productivity of drought stressed wheat. Communications in Soil Science and Plant Analysis, 52(4): 338-352.

Riadh, K., Wided, M., Hans-Werner, K., and Chedly, A 2010. Responses of halophytes to environmental stresses with special emphasis to salinity. In Advances in botanical research, Vol.53: pp. 117-145 Academic Press.

Richter, B. S., Ivors, K., Shi, W., and Benson, D. M. 2011. Cellulase activity as a mechanism for suppression of Phytophthora root rot in mulches. Phytopathology, 101(2): 223-230.

Riley, M. A., and Wertz, J. E. 2002. Bacteriocins: evolution, ecology, and application. Annual Reviews in Microbiology, 56(1): 117-137.

Ritonga, F. N., and Chen, S. 2020. Physiological and molecular mechanism involved in cold stress tolerance in plants. Plants, 9(5): 560.

Rodríguez-Salazar, J., Suárez, R., Caballero-Mellado, J., and Iturriaga, G. 2009. Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants. FEMS Microbiology Letters, 296(1): 52-59.

Roy choudhury, A., and Paul, A. 2012. Abscisic acid-inducible genes during salinity and drought stress. Advances in Medicine and Biology, 51: 1-78.

Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W., andParé, P. W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiology, 134(3): 1017-1026.

Sadfi, N., Cherif, M., Fliss, I., Boudabbous, A., andAntoun, H. 2001. Evaluation of bacterial isolates from salty soils and Bacillus thuringiensis strains for the biocontrol of Fusarium dry rot of potato tubers. Journal of Plant Pathology, 101-117.

Saha, M., Sarkar, S., Sarkar, B., Sharma, B. K., Bhattacharjee, S., andTribedi, P. 2016. Microbial siderophores and their potential applications: a review. Environmental Science and Pollution Research, 23(5): 3984-3999.

Saha, S. P., and Mazumdar, D. 2022.Potential of Plant Growth Promoting Rhizobacteria for Enhancement of Plant Growth and Its Role in Improving Soil Health under Abiotic Stress. In Plant Stress: Challenges and Management in the New Decade: 311-320 Springer, Cham.

Saikia, R., Singh, T., Kumar, R., Srivastava, J., Srivastava, A. K., Singh, K., and Arora, D. K. 2003. Role of salicylic acid in systemic resistance induced by Pseudomonas fluorescens against Fusariumoxysporum f. sp. ciceri in chickpea. Microbiological Research, 158(3): 203-213.

Salomon, M. V., Bottini, R., de Souza Filho, G. A., Cohen, A. C., Moreno, D., Gil, M., and Piccoli, P. 2014.Bacteria isolated from roots and rhizosphere of Vitis vinifera retard water losses, induce abscisic acid accumulation and synthesis of defense-related terpenes in in vitro cultured grapevine. Physiologia Plantarum, 151(4): 359-374. .

Salomon, M. V., Bottini, R., de Souza Filho, G. A., Cohen, A. C., Moreno, D., Gil, M., and Piccoli, P. 2014. Bacteria isolated from roots and rhizosphere of Vitis vinifera retard water losses, induce abscisic acid accumulation and synthesis of defense-related terpenes in in vitro cultured grapevine. Physiologia Plantarum, 151(4): 359-374.

Sangwan, V., Foulds, I., Singh, J., and Dhindsa, R. S. 2001. Cold-activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2+ influx. The Plant Journal, 27(1): 1-12.

Saravanakumar, D., and Samiyappan, R. 2007. ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. Journal of Applied Microbiology, 102(5): 1283-1292.

Sarma, B. K., Yadav, S. K., Singh, D. P., and Singh, H. B. 2012. Rhizobacteria mediated induced systemic tolerance in plants: prospects for abiotic stress management. In Bacteria in agrobiology: stress management:225-238 Springer, Berlin, Heidelberg.

Schmidt, L. M., Hewlett, T. E., Green, A., Simmons, L. J., Kelley, K., Doroh, M., and Stetina, S. R. 2010. Molecular and morphological characterization and biological control capabilities of a Pasteuria ssp. parasitizing Rotylenchulus reniformis, the reniform nematode. Journal of Nematology, 42(3): 207.

Schulz, S., and Dickschat, J. S. 2007. Bacterial volatiles: the smell of small organisms. Natural Product Reports, 24(4): 814- 842.

Selvakumar, G., Panneerselvam, P., and Ganeshamurthy, A. N. 2012. Bacterial mediated alleviation of abiotic stress in crops. In Bacteria in agrobiology: stress management: 205-224 Springer, Berlin, Heidelberg.

Selvaraj, S., Ganeshamoorthi, P., Anand, T., Raguchander, T., Seenivasan, N., and Samiyappan, R. 2014. Evaluation of a liquid formulation of Pseudomonas fluorescens against Fusarium oxysporum f. sp. cubense and Helicotylen chusmulticinctus in banana plantation. BioControl, 59(3): 345-355.

Shanmugaiah, V., Nithya, K., Harikrishnan, H., Jayaprakashvel, M., and Balasubramanian, N. 2015. Biocontrol mechanisms of siderophores against bacterial plant pathogens. Sustainable approaches to controlling plant pathogenic bacteria: 167-190.

Sharifi, R., and Ryu, C. M. 2016. Bacterial volatile compounds poisonous odors to a fungal pathogen Botrytis cinerea, alarm signals to Arabidopsis seedlings for eliciting induced resistance, or both? Frontiers in Microbiology, 7: 196.

Siddiqui, I. A., Shaukat, S. S., Sheikh, I. H., and Khan, A. 2006. Role of cyanide production by Pseudomonas fluorescens CHA0 in the suppression of root-knot nematode, Meloidogyne javanica in tomato. World Journal of Microbiology and Biotechnology, 22(6): 641-650.

Singh, P., Singh, R. K., Zhou, Y., Wang, J., Jiang, Y., Shen, N., and Jiang, M. 2022. Unlocking the strength of plant growth promoting Pseudomonas in improving crop productivity in normal and challenging environments: a review. Journal of Plant Interactions, 17(1): 220-238.

Singh, S., Singh, B., and Singh, A. P. 2014. Integrated management of root-knot disease of okra caused by root-knot nematode, Meloidogyne incognita. Indian Journal of Nematology, 44(2): 172-178.

Someya, N., Kataoka, N., Komagata, T., Hirayae, K., Hibi, T., and Akutsu, K. 2000. Biological control of cyclamen soilborne diseases by Serratia marcescens strain B2. Plant Disease, 84(3): 334-340.

Son, S. H., Khan, Z., Kim, S. G., and Kim, Y. H. 2009. Plant growth-promoting rhizobacteria, Paenibacillus polymyxa and Paenibacillus lentimorbus suppress disease complex caused by root-knot nematode and fusarium wilt fungus. Journal of Applied Microbiology, 107(2): 524-532.

Srivastava, R. A. J. A. N. I., and Singh, A. N. S. H. I. K. A. 2017. Plant growth promoting rhizobacteria (PGPR) for sustainable agriculture. Article International Journal of Agricultural Science and Research, 7(4): 505-510.

Srivastava, S., Yadav, A., Seem, K., Mishra, S., Chaudhary, V., and Nautiyal, C. S. 2008. Effect of high temperature on Pseudomonas putida NBRI0987 biofilm formation and expression of stress sigma factor RpoS. Current Microbiology, 56(5): 453-457.

Staswick, P. E., Su, W., andamp, Howell, S. H. 1992. Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proceedings of the National Academy of Sciences, 89(15): 6837-6840.

Subramanian, P., Mageswari, A., Kim, K., Lee, Y., and SA, T. 2015. Psychrotolerant endophytic Pseudomonas sp. strains OB155 and OS261 induced chilling resistance in tomato plants (Solanum lycopersicum Mill.) by activation of their antioxidant capacity. Molecular Plant-Microbe Interactions, 28(10): 1073-1081.

Sundaramoorthy, S., Raguchander, T., Ragupathi, N., and Samiyappan, R. 2012. Combinatorial effect of endophytic and plant growth promoting rhizobacteria against wilt disease of Capsicum annum L. caused by Fusarium solani. Biological Control, 60(1): 59-67.

Suryadi, Y., Susilowati, D. N., and Fauziah, F. 2019. Management of plant diseases by PGPR-mediated induced resistance with special reference to tea and rice crops. Plant growth promoting Rhizobacteria for sustainable stress management: 65-110.

Tariq, M., Noman, M., Ahmed, T., Hameed, A., Manzoor, N., and Zafar, M. 2017. Antagonistic features displayed by plant growth promoting rhizobacteria (PGPR): a review. Journal of Plant Science and Phytopathology,1(1): 038-43.

Timmusk, S., and Wagner, E. G. H. 1999. The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Molecular Plant-microbe Interactions, 12(11): 951-959.

Tiwari, M., Kumar, R., Min, D., and Krishna Jagadish, S. V. 2022. Genetic and molecular mechanisms underlying root architecture and function under heat stress-A hidden story. Plant, Cell and Environment, 45(3):771-788.

Tiwari, S., Pandey, S., Chauhan, P. S., and Pandey, R. 2017. Biocontrol agents in co-inoculation manages root knot nematode (Meloidogyne incognita (Kofoid and White) Chitwood) and enhances essential oil content in Ocimum basilicum L. Industrial Crops and Products, 97: 292-301.

Troppens, D. M., Chu, M., Holcombe, L. J., Gleeson, O., O’Gara, F., Read, N. D., and Morrissey, J. P. 2013. The bacterial secondary metabolite 2, 4-diacetylphloroglucinol impairs mitochondrial function and affects calcium homeostasis in Neurosporacrassa. Fungal Genetics and Biology, 56: 135-146.

Udhayakumar, R., and Muthukumar, A. 2019. Biological Management of Mango Anthracnose Caused by Colletotrichum gloeosporioides. Current Research and Innovations in Plant Pathology, 135.

Van Loon, L. C., and Bakker, P. A. H. M. 2005. Induced systemic resistance as a mechanism of disease suppression by rhizobacteria. In PGPR: Biocontrol and Biofertilization: 39-66 Springer, Dordrecht.

Van Loon, L. C., Bakker, P. A. H. M., and Pieterse, C. M. J. 1998. Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology, 36: 453-483.

Van Loon, L. C. 1997. Induced resistance in plants and the role of pathogenesis-related proteins. European Journal of Plant Pathology, 103(9): 753-765.

Van Loon, L. C. 2007. Plant responses to plant growth-promoting rhizobacteria. New perspectives and approaches in plant growth-promoting Rhizobacteria research: 243-254.

Van Wees, S. C., Pieterse, C. M., Trijssenaar, A., Van'tWestende, Y. A., Hartog, F., and Van Loon, L. C. 1997. Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Molecular Plant-Microbe Interactions, 10(6): 716-724.

Viswanathan, R., and Samiyappan, R. 2012. Role of chitinases in Pseudomonas spp. induced systemic resistance against Colletotrichum falcatum in sugarcane. Indian Phytopathology, 54(4), 418–423

Wang, K., Liu, Y., Teng, F., Cen, H., Yan, J., Lin, S., and Zhang, W. 2021. Heterogeneous expression of Osa-MIR156bc increases abiotic stress resistance and forage quality of alfalfa. The Crop Journal, 9(5): 1135-1144.

Whiting, S. N., de Souza, M. P., and Terry, N. 2001. Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environmental Science and Technology, 35(15): 3144-3150.

Xiong, L., and Yang, Y. 2003. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid–inducible mitogen-activated protein kinase. The Plant Cell, 5(3): 745-759.

Yang, J., Kloepper, J. W., and Ryu, C. M. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends in Plant Science, 4(1): 1-4.

Zarrougui, N. E., Spanos, T., Kissoudis, C., and Livieratos, I. C. 2022. The effect of soil salinity and pepino mosaic

Zhang, H. X., and Blumwald, E. 2001. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotechnology, 19(8): 765-768.

Zhang, H., Kim, M. S., Sun, Y., Dowd, S. E., Shi, H., and Paré, P. W. 2008. Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Molecular Plant-Microbe Interactions, 21(6): 737-744.

Published

2023-07-30

How to Cite

Jain, T., Gehlot, P., Yadav, J., & Chittora , D. (2023). Molecular basis of biotic and abiotic stress management attributes of plant growth promoting rhizobacteria . Journal of Postharvest Technology, 11(3), 29–55. Retrieved from https://acspublisher.com/journals/index.php/jpht/article/view/14998