Trends in Estimation of Post-Mortem Interval Using Instrumental Analysis

Authors

  • Aswathy Ajayan Ph.D. Scholar, Department of Forensic Medicine & Toxicology, JSS Medical College, JSS AHER, Mysore
  • G B Aravind Associate Professor & Coordinator of Forensic Science, Department of Forensic Medicine & Toxicology, JSS Medical College, JSS AHER, Mysore
  • H V Chandrakanth Professor and HOD, Department of Forensic Medicine & Toxicology, JSS Medical College, JSS AHER, Mysore
  • Tanuj Kanchan Professor & Vice Dean, Department of Forensic Medicine & Toxicology, AIIMS Jodhpur

Keywords:

Medico-Legal Examination; Post-Mortem Interval; Autolysis; Thanatomicrobiome; Spectroscopy.

Abstract

The importance of estimating time since death has been acknowledged for centuries. One of the key elements in crime investigation lies in the reckoning of post-mortem interval(PMI). It’s evident why an accurate post-mortem interval estimation is needed in all criminal cases. There is ample literature regarding the techniques for estimating postmortem interval, but these techniques must be as precise, reliable, and scientific as possible. Conventional methods for determining PMI are fixed on physical, metabolic, autolysis, histochemistry, and physicochemical processes. These parameters are employed in the initial period of postmortem, and over time its reliability decreases. Recent research attempts the improvement of post-mortem interval estimation by more predictable and quantifiable parameters. This study presents the current headway in estimating time since death. Chemical changes in biological samples, Spectroscopical analysis for detection of biochemical changes, thanatomicrobiome analysis, predictable protein degradation process in human muscles, and dating of skeletal remains -improved the postmortem interval estimates. Further research is needed in these many parameters, the field still has a long way to go in terms of finding the exclusive formula for accurate post mortem interval estimation. This is a review that emphasizes several recent methods for precisely estimating post mortem intervals by instrumental analysis.

References

Brooks J. Postmortem changes in animal carcasses and estimation of the postmortem interval. Vet Pathol. 2016;53(5):929–40.

Eden RE, Thomas B. Algor mortis. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022.

Wardak KS, Cina SJ. Algor mortis: an erroneous measurement following postmortem refrigeration. J Forensic Sci. 2011;56(5):1219–21.

Musile G, Agard Y, Wang L, De Palo EF, McCord B, Tagliaro F. Paper-based microfluidic devices: on-site tools for crime scene investigation. TrAC Trends Anal Chem. 2021;143:116406.

Kori S. Time since death from rigor mortis: forensic perspective. J Forensic Sci Crim Investig. 2018;9(5):555771.

Hoet J, Marks H. Observations on the onset of rigor mortis. Proc R Soc Lond B Biol Sci. 1926;100(700):72–86.

Emam A, Mujalid H, Altamimi N, Faraj W, Almutairi M, Alresheedi Z, et al. Classification of post-mortem changes and factors affecting it. J Healthc Sci. 2022;2:213–8.

Shrestha R, Kanchan T, Krishan K. Methods of estimation of time since death [Internet]. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023 May 30.

Vanezis P, Trujillo O. Evaluation of hypostasis using a colour measuring system. Forensic Sci Int. 1996;78(1):19–26.

Zapico SC, Adserias-Garriga J. Postmortem interval estimation: new approaches by the analysis of human tissues and microbial communities’ changes. Forensic Sci. 2022;2(1):163–74.

Harvey ML, Gasz NE, Voss SC. Entomology-based methods for estimation of postmortem interval. Res Rep Forensic Med Sci. 2016;6:1–9.

Faris AMWH, Tarone AM, Grant WE. Forensic entomology: evaluating uncertainty associated with postmortem interval estimates with ecological models. J Med Entomol. 2016;53(5):1117–30.

Gevers W. Biochemical aspects of cell death. Forensic Sci. 1975;6(1–2):25–9.

Javan GT, Finley SJ, Can I, Wilkinson JE, Hanson JD, Tarone AM. Human thanatomicrobiome succession and time since death. Sci Rep. 2016;6:29598.

Li Z, Huang J, Wang Z, Zhang J, Huang P. Annular cartilage samples for postmortem interval estimation using Fourier transform infrared spectroscopy. Forensic Sci Med Pathol. 2019;15:521–7.

Grossman PD, Colburn JC. Capillary electrophoresis: theory and practice. 2nd ed. San Diego (CA): Academic Press; 2012.

Havel J, Peña-Méndez EM, Rojas-Hernández A. Artificial neural networks in capillary electrophoresis. In: Tóth K, Šimurková M, editors. Capillary electrophoresis and microchip capillary electrophoresis. New York: Wiley; 2013. p. 77–93.

Rognum T, Holmen S, Musse M, Dahlberg P, Stray-Pedersen A, Saugstad O, et al. Estimation of time since death by vitreous humor hypoxanthine, potassium, and ambient temperature. Forensic Sci Int. 2016;262:160–5.

Palacio C, Gottardo R, Cirielli V, Musile G, Agard Y, Bortolotti F, et al. Simultaneous analysis of potassium and ammonium ions in vitreous humour by capillary electrophoresis for postmortem interval inference. Med Sci Law. 2021;61(1 Suppl):96–104.

Bocaz-Beneventi G, Tagliaro F, Bortolotti F, Manetto G, Havel J. Capillary zone electrophoresis and artificial neural networks for estimation of postmortem interval using electrolytes in human vitreous humour. Int J Legal Med. 2002;116:5–11.

Gottardo R, Palacio C, Shestakova KM, Moskaleva NE, Bortolotti F, Tagliaro F. Determination of ammonium in vitreous humour using capillary electrophoresis in thanatochemistry. Clin Chem Lab Med. 2019;57(4):504–9.

Bertaso A, De Palo EF, Cirielli V, Tagliaro F. Lactate determination in human vitreous humour by capillary electrophoresis for time of death investigation. Electrophoresis. 2020;41(12):1039–44.

Konieczka P, Namieśnik J. Estimating uncertainty in analytical procedures based on chromatographic techniques. J Chromatogr A. 2010;1217(6):882–91.

Smith I. Chromatography. 3rd ed. Amsterdam: Elsevier (Butterworth-Heinemann); 2013.

Coskun O. Separation techniques: chromatography. North Clin Istanb. 2016;3(2):156–60.

Bartle KD, Myers P. History of gas chromatography. TrAC Trends Anal Chem. 2002;21(9–10):547–57.

Littlewood AB. Gas chromatography: principles, techniques, and applications. Amsterdam: Elsevier; 2013.

Dettmer-Wilde K, Engewald W. Practical gas chromatography: a comprehensive reference. Heidelberg: Springer; 2014.

Aiello D, Luca F, Siciliano C, Frati P, Fineschi V, Rongo R, et al. MS-based thanatochemistry for postmortem interval estimation. J Proteome Res. 2021;20(5):2607–17.

Moore HE, Adam CD, Drijfhout FP. Hydrocarbons for aging Lucilia sericata larvae in PMI estimation. J Forensic Sci. 2013;58(2):404–10.

Moore HE. Analysis of cuticular hydrocarbons in blowflies for PMI estimation [dissertation]. Keele (UK): Keele University; 2013.

Frere B, Suchaud F, Bernier G, Cottin F, Vincent B, Dourel L, et al. GC-MS analysis of cuticular lipids in scavenger insect puparia for PMI estimation. Anal Bioanal Chem. 2014;406:1081–8.

Kaszynski RH, Nishiumi S, Azuma T, Yoshida M, Kondo T, Takahashi M, et al. GC/MS-based biochemical profiling for postmortem interval estimation. Anal Bioanal Chem. 2016;408:3103–12.

Dubois LM, Stefanuto PH, Perrault KA, Delporte G, Delvenne P, Focant JF. Monitoring human tissue degradation. Chromatographia. 2019;82(5):857–71.

Go A, Shim G, Park J, Hwang J, Nam M, Jeong H, et al. Hypoxanthine and lactic acid in vitreous humor for PMI estimation using LC–MS/MS. Forensic Sci Int. 2019;299:135–41.

Zhang Y, Liu L, Ren L. LC-MS/MS determination of cantharidin in biological specimens for PMI estimation. Sci Rep. 2020;10(1):10438.

Published

2025-10-29

How to Cite

Trends in Estimation of Post-Mortem Interval Using Instrumental Analysis . (2025). Journal of Forensic Medicine & Toxicology, 42(3), 89-99. https://acspublisher.com/journals/index.php/jfmt/article/view/23647