THERAPEUTIC POTENTIAL OF SCORPION VENOM IN CANCER TREATMENT AS ANTICANCER AGENT: A REVIEW

Authors

  • Sejal Singh Rajput Department Forensic Science, School of Basic and Aapplied Sciences, Galgotias University, Greater Noida, U.P. India.
  • Harsh Mohan Department Forensic Science, School of Basic and Aapplied Sciences, Galgotias University, Greater Noida, U.P. India.
  • Ekta Jadhav Government Institute of Forensic Science Aurangabad, Maharashtra, India.
  • Swaroop S Sonone Department of Forensic Science, Department of Forensic Science, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra
  • Varad Nagar Department of Forensic Science, Vivekananda Global University, Jaipur, Rajasthan, India..
  • Apoorva Singh Department of Forensic Science, Vivekananda Global University, Jaipur, Rajasthan, India..
  • Rushikesh L Chopade Department of Forensic Science, Vivekananda Global University, Jaipur, Rajasthan, India..
  • Kumud Kant Awasthi Department of Life Science, Vivekananda Global University, Jaipur, Rajasthan, India.
  • Mahipal Singh Sankhla Department of Life Science, Vivekananda Global University, Jaipur, Rajasthan, India.

Keywords:

Scorpion, Cancer, Therapeutics, Pharmacological

Abstract

Scorpions are distinguished via their deadly stings, which could give result in serious repercussions for humans. It is the most expensive fluid in the planet, costing $39 million per gallon. Cancer is a very frequent disease nowadays. This causes aberrant cell growth, which has the potential to infect or spread to other regions of the body. The presence of 42 multipart cocktail of biogenic amines, proteins, organic salts, mucoproteins, peptides, and 43 neurotoxins in scorpion venom has proven a prospective therapeutic application on cancer cells in medical research. Furthermore, an increasing number of research have suggested that scorpion venoms and poisons may inhibit cancer growth, limit cancer development and metastasis, and promote cancer remission. induce apoptosis and in vitro and in vivo. 

References

Bawaskar HS; Bawaskar PH. Scorpion sting: update. J Assoc Physicians India, 2012, 60:46–55 10.4103/2249- 4863.214988

Rodrýguez De La Vega, R.C., and Possani, L.D. Overview of scorpion toxins specific for Na þ channels and related peptides: biodiversity, structure-function relationships and evolution. Toxicon, 2005, 46, 831– 844 https://doi.org/10.1016/j.toxicon.2005.09.006

Valdez-Cruz, N.A., et al., Anticoagulants from scorpion venoms. Toxins and hemostasis: from bench to bedside, 2011, 255–266. https://doi.org/10.1007/978- 90-481-9295-3_16

Mishal, R; Tahir, H. M.; Zafar, K., & Arshad, M. Anti cancerous applications of scorpion venom. International Journal of Biological and Pharmaceutical Research, 2013, 4(5), 356- 360.

Antony Gomes; Pushpak Bhattacharjee; Roshnara Mishra; Ajoy k. Biswas; Subir Chandra Dasgupta; Biplab Giri. Anticancer potential of animal venoms and toxins. Indian journal of experimental biology. 2010; 48:93-103 http://nopr.niscair.res.in/handle/ 123456789/7333

Cancer Research UK. Available from: https:// www.cancerresearchuk.org/. Accessed 14 February, 2020.

Balwit JM; Hwu P; Urba WJ; Marincola FM. The iSBTc/SITC primer on tumor immunology and biological therapy of cancer: a summary of the 2010 program. J Transl Med. 2011; 9:18. doi:10.1186/1479- 5876-9-18

Mamelak AN; Jacoby DB. Targeted delivery of antitumoral therapy to glioma and other malignancies with synthetic chlorotoxin (TM-601). Expert Opin Drug Deliv. 2007; 4 (2): 175–86. https://doi.org/ 10.1517/17425247.4.2.175

Ortiz, E; Gurrola, G. B; Schwartz, E. F; Possani, L. D. Scorpion venom components as potential candidates for drug development. Toxicon, 2015, 93, 125-135. https://doi.org/10.1016/j.toxicon.2014.11.233

Kerkis, I.; de Brandão, P.; da Silva, A.R.; Pompeia, C.; Tytgat, J.; de Sá Junior, P.L. Toxin bioportides: Exploring toxin biological activity and multifunctionality. Cell. Mol. Life Sci. 2017, 74, 647– 661. https://doi.org/10.1007/s00018-016-2343-6

Zeng, X.C.; Carzo, G.; Hahin, R. Scorpion venom peptides without disulfide bridges. IUBMB life, 2005, 57, 13-21 https://doi.org/10.1080/15216540500058899

Joseph, B. and George, J., Scorpion toxins and its applications. International journal of toxicological and pharmacological research, 2012, 4 (3), 57–61

Raza, M.; Shaheen, F.; Choudhary, M. I.; Sombati, S.; Rafiq, A.; Suria, A.; DeLorenzo, R. J. Anticonvulsant activities of ethanolic extract and aqueous fraction isolated from Delphinium denudatum. Journal of ethnopharmacology, 2001, 78 (1), 73–78. https:// doi.org/10.1016/S0378-8741(01)00327-0

Villetti, G.; Bregola, G.; Bassani, F.; Bergamaschi, M.; Rondelli, I.; Pietra, C.; Simonato, M. Preclinical evaluation of CHF3381 as novel antiepileptic agent. Neuropharmacol, 2001, 40 (7), 866–878. https:// doi.org/10.1016/S0028-3908(01)00026-0

Gao, B.; Xu, J.; del Carmen Rodriguez, M.; Lanz Mendoza, H.; Hernández-Rivas, R.; Du, W.; Zhu, S. Characterization of two linear cationic antimalarial peptides in the scorpion Mesobuthus eupeus. Biochimie, 2010, 92 (4), 350–359 https://doi.org/ 10.1016/j.biochi.2010.01.011

Joseph, B.; George, J. Scorpion toxins and its applications. International journal of toxicological and pharmacological research, 2012, 4 (3), 57–61

Lu, X.; Lu, D.; Scully, M. F.; Kakkar, V. V. Integrins in drug targeting-RGD templates in toxins. Current pharmaceutical design, 2006, 12 (22), 2749–2769. https://doi.org/10.2174/138161206777947713

Cao, Z.; Di, Z.; Wu, Y.; Li, W. Overview of scorpion species from china and their toxins. Toxins, 2014, 6 (3), 796–815. https://doi.org/10.3390/toxins6030796

Zeng, X. C.; Wang, S. X.; Zhu, Y.; Zhu, S. Y.; Li, W. X. Identification and functional characterization of novel scorpion venom peptides with no disulfide bridge from Buthus martensii. Peptides, 2004, 25 (2), 143–150. https://doi.org/10.1016/j.peptides.2003.12.003

Fan, Z.; Cao, L.; He, Y.; Hu, J.; Di, Z.; Wu, Y.; ... Cao, Z. Ctriporin, a new anti–methicillin–resistant Staphylococcus aureus peptide from the venom of the scorpion Chaerilus tricostatus. Antimicrobial agents and chemotherapy, 2011, 55 (11), 5220–5229.

1128/AAC.00369-11

Conde, R.; Zamudio, F.Z.; Rodríguez, M.H.; Possani, L.D. Scorpine, an anti-malaria and anti-bacterial agent purified from scorpion venom. Febs Lett. 2000, 471, 165–168. https://doi.org/10.1016/S0014- 5793(00)01384-3

Cahalan MD. Modification of sodium channel gating in frog myelinated nerve fibres by Centruroides sculpturatus scorpion venom. J Physiol 1975, 244(2): 511-34. https://doi.org/10.1113/jphysiol.1975.sp010810

Brogden KA; Ackermann M; McCray PB Jr; Tack BF. Antimicrobial peptides in animals and their role in host defences. Int J Antimicrob Agents 2003, 22(5):465-78 https://doi.org/10.1016/S0924- 8579(03)00180-8

Chen, R.; Chung, S.H. Engineering a potent and specific blocker of voltage-gated potassium channel Kv1.3, a target for autoimmune diseases. Biochemistry, 2012, 51 (9), 1976–1982. https://doi.org/10.1021/ bi201811j

Al-Asmari, A. K.; Kunnathodi, F.; Al Saadon, K.; Idris, M. M. Elemental analysis of scorpion venoms. Journal of venom research, 2016, 7, 16–20.

Gomes A; Bhattacharjee P; Mishra R; Biswas AK; Dasgupta SC; Giri B. Anticancer potential of animal venoms and toxins. Indian J Exp Biol 2010; 48:93– 103 16. http://nopr.niscair.res.in/handle/123456789/ 7333

Pietrangelo, A. Surgeons using scorpion venom to Illuminate brain tumors Healthline News Letter [Online], 2017

Litan A; Langhans SA. Cancer as a channelopathy: ion channels and pumps in tumor development and progression. Front Cell Neurosci. 2015; 9:86. doi:10.3389/fncel.2015.00086

N, Sontheimer H. Cell cycle-dependent expression of a glioma-specific chloride current: proposed link to cytoskeletal changes. Am J Physiol. 1997; 273:C1290– C1297. doi:10.1152/ajpcell.1997.273.4.C1290

Turner KL Sontheimer H. Cl- and K+ channels and their role in primary brain tumour biology Philos Trans R Soc Lond B Biol Sci. 2014; 369:20130095. doi:10.1098/ rstb.2013.0095

Liu YF; Hu. Mcferrin MB; Sontheimer H. A role for ion channels in glioma cell invasion. Neuron Glia Biol. 2006; 2(1): 39–49. doi:10.1017/ S1740925X06000044 8.

Sontheimer H. An unexpected role for ion channels in brain tumor metastasis. Exp Biol Med. 2008; 233:779–791. doi:10.3181/0711-MR-308

Bustin SA; Li SR; Dorudi S. Expression of the Ca2C activated chloride channel genes CLCA1 and CLCA2

is downregulated in human colorectal cancer. DNA Cell Biol. 2001; 20:331–338. doi:10.1089/ 10445490152122442

Ullrich J; Zhang JH; Wang SL; Wu CF. Isolation purification, and N terminal partial sequence of an anti tumor-analgesic peptide from the venom of the Chinese scorpion Buthus martensii Karsch. Prep Biochem Biotechnol. 2002; 32:317–327. doi:10.1081/ PB-120015456 13.

Northcott PA; Dubuc AM; Pfister S; Taylor MD. Molecular subgroups of medulloblastoma. Expert Rev Neurother. 2012; 12:871–884. doi:10.1586/ern.12.66

Chioni AM; Shao D; Grose R; Djamgoz MB. Protein kinase A and regulation of neonatal NaV1.5 expression in human breast cancer cells: activity-dependent positive feedback and cellular migration. Int J Biochem Cell Biol. 2010;42:346–358. doi:10.1016/ j.biocel.2009.11.021 .

Fraser SP; Ozerlat-Gunduz I; Brackenbury WJ; et al. Regulation of voltage-gated sodium channel expression in cancer: hormones, growth factors and auto-regulation. Philos Trans R Soc Lond B Biol Sci. 2014; 369:20130105. doi:10.1098/rstb.2013.0105’

Ding X; He Z; Zhou K; et al. Essential role of TRPC6 channels in G2/M phase transition and development of human glioma. J Natl Cancer Inst. 2010; 102:1052– 1068. doi:10.1093/jnci/djq217 23.

Zhang Y; Wang H; Qian Z; et al. Low voltage activated T-type Ca2C channel inhibitors as new tools in the treatment of glioblastoma: the role of endostatin. Pflugers Arch. 2014; 466:811–818. doi:10.1007/ s00424- 013-1427-5

Quintero-Hernández V; Jiménez-Vargas JM; Gurrola GB; Valdivia HH; Possani LD. Scorpion venom components that affect ion-channels function. Toxicon. 2013; 76:328–342. doi:10.1016/j. toxicon.2013.07.012

Al-Asmari AK; Islam M; Al-Zahrani AM. In vitro analysis of the anticancer properties of scorpion venom in colorectal and breast cancer cell lines. Oncol Lett. 2016; 11(2):1256–1262. doi:10.3892/ ol.2015.4036

Soroceanu L; Manning TJ Jr; Sontheimer H. Modulation of glioma cell migration and invasion using Cl(-) and K(+) ion channel blockers. J Neurosci. 1999; 19:5942–5954. doi:10.1523/ JNEUROSCI.19-14- 05942.1999

Sawaya RE; Yamamoto M; Gokaslan ZL; et al. Expression and localization of 72 kDa type IV collagenase (MMP-2) in human malignant gliomas in vivo. Clin Exp Metastasis. 1996; 14:35–42. doi:10.1007/ BF00157684

Jacoby DB; Dyskin E; Yalcin M; et al. Potent

pleiotropic anti-angiogenic effects of TM601, a synthetic chlorotoxin peptide. Anticancer Res. 2010; 30(1):39–46.

Fu YJ; Yin LT; Liang AH; et al. Therapeutic potential of chlorotoxin like neurotoxin from the Chinese scorpion for human gliomas. Neurosci Lett. 2007; 412:62–67. doi:10.1016/j.neulet.2006.10.056

Zargan J; Umar S; Sajad M; et al. Scorpion venom (Odontobuthus doriae) induces apoptosis by depolarization of mitochondria and reduces S-phase population in human breast cancer cells (MCF-7). Toxicol in Vitro. 2011; 25(8):1748–1756. doi:10.1016/j. tiv.2011.09.002 27.

Zargan J; Mir S; Umar S; et al. Scorpion (Odontobuthus doriae) venom induces apoptosis and inhibits DNA synthesis in human neuroblastoma cells. Mol Cell Biochem. 2010; 348(1–2):173–181. doi:10.1007/s11010-010-0652-x

Zang YY; Wu LC; Wang ZP; et al. Anti-proliferation effect of polypeptide extracted from scorpion venom on human prostate cancer cells in vitro. J Clin Med Res. 2009; 1(1):24–31. doi:10.4021/ jocmr2009.01.1220

Al Asmari AK; Khan AQ. Investigation of in vivo potential of scorpion venom against skin tumorigenesis in mice via targeting markers associated with cancer development. Drug Des Devel Ther. 2016; 10:3387–3397. doi:10.2147/DDDT.S113171

Liu X; Chang Y; Reinhart PH;Sontheimer H; Chang Y. Cloning and characterization of glioma BK, a novel BK channel isoform highly expressed in human glioma cells. J Neurosci. 2002; 22:1840–1849. doi:10.1523/ JNEUROSCI.22-05-01840.2002

Oeggerli M; Tian Y;Ruiz C; et al. Role of KCNMA1 in breast cancer. PLoS One. 2012; 7:e41664. doi:10.1371/ journal.pone.0041664

Ramírez A; Vera E; Gamboa-Domínguez A; Lambert P; Gariglio P; Camacho J. Calcium-activated potassium channels as potential early markers of human cervical cancer. Oncol Lett. 2018;15 (5):7249– 7254. doi:10.3892/ol.2018.8187

Song X; Zhang G; Sun A; et al. Scorpion venom component III inhibits cell proliferation by modulating NF-kappaB activation in human leukemia cells. Exp Ther Med. 2012;4(1):146–150. doi:10.3892/ etm.2012.548

Sariego J. Breast cancer in the young patient. The American surgeon. 2010; 76 (12): 1397–1401. https:// doi.org/10.1177/000313481007601226

Zargan J; Sajad M; Umar S; Naime M; Ali S; Khan HA. Scorpion (Odontobuthusdoriae) venom induces apoptosis and inhibits DNA synthesis in human neuroblastoma cells. Mol Cell Biochem 2011; 348:173–

https://doi.org/10.1007/s11010-010-0652-x

Zargan J; Umar S; Sajad M; Naime M; Ali S; Khan HA. Scorpion venom (Odontobuthusdoriae) induces apoptosis by depolarization of mitochondria and reduces S-phase population in human breast cancer cells (MCF-7). Toxicol In Vitro 2011; 25:1748–56. https:/ /doi.org/10.1016/j.tiv.2011.09.002

Koohi MK; Mirakabadi ZA; Moharrami M; Hablolvarid M H. Anticancer effect of ICD-85 (venom derived peptides) on MDAMB231cell line (in vitro) and experimental mice with breast cancer (in vivo). Int J Vet Res. 2009; 3: 49–54

Salem ML; Shoukry NM; Teleb WK; Abdel-Daim MM; Abdel-Rahman MA: In vitro and in vivo antitumor effects of the Egyptian scorpion Androctonusamoreuxi venom in an Ehrlich ascites tumor model. SpringerPlus 2016; 5(1): 1. https:// doi.org/10.1186/s40064-016-2269-3

Chang, N. S. Transforming growth factor-beta protection of cancer cells against tumor necrosis factor cytotoxicity is counteracted by hyaluronidase (review). International Journal of Molecular Medicine, 1998, 2(6), 653-662. https://doi.org/10.3892/ ijmm.2.6.653

Li, H. M.; Wang, D. C.; Zeng, Z. H.; Jin, L.; Hu, R. Q. Crystal Structure of an Acidic Neurotoxin from Scorpion ButhusmartensiiKarsch at 1.85 Å Resolution. Journal of Molecular Biology, 1996, 261(3), 415-431. https://doi.org/10.1006/jmbi.1996.0473

D’Suze, G.; Rosales, A.; Salazar, V.; Sevcik, C. Apoptogenic peptides from Tityusdiscrepans scorpion venom acting against the SKBR3 breast cancer cell line. Toxicon, 2010, 56(8), 1497-1505. https:/ /doi.org/10.1016/j.toxicon.2010.09.008

Wang WX; Ji YH. Scorpion venom induces glioma cell apoptosis in vivo and inhibits glioma tumor growth in vitro. J Neurooncol 2005; 73:1–7. https://doi.org/ 10.1007/s11060-004-4205-6

Wang, C.; Chen, T.; Zhang, N.; Yang, M.; Li, B.; Lü, X.; Cao, X.; Ling, C. Melittin, a major component of bee venom, sensitizes human hepatocellular carcinoma cells to tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-induced apoptosis by activating CaMKII-TAK1-JNK/p38 and inhibiting IkappaBalpha kinase-NFkappaB. J. Biol. Chem. 2009, 284, 3804–3813. https://doi.org/10.1074/ jbc.M807191200

Giovannini, C. Venom from Cuban Blue Scorpion has tumor activating effect in hepatocellular carcinoma. Scientific reports, 2017, 7, 44685. https://doi.org/ 10.1038/srep44685

Lee, H.; Bae, S. K.; Kim, M.; Pyo, M. J.; Kim, M.; Yang, S.; Won, C. K.; Yoon, W. D.; Han, C. H.; Kang,

C.; Kim, E., Anticancer effect of Nemopilemanomurai Jellyfish Venom on HepG2 Cells and a Tumor Xenograft Animal Model. Evidence-based Complementary and Alternative medicine : eCAM 2017, 2017, 2752716. https://doi.org/10.1155/2017/ 2752716

Li JW; Hu J; Zhang GR; Wei ZR: Effects of anticancer peptide fraction III from ButhusmartensiiKarsch on apoptosis of human liver cancer cells. Journal of Jilin University Medicine Edition 2006; 32(4): 625-8

Al-Asmari, A. K.; Al-Saif, A. A. Scorpion sting syndrome in a general hospital in Saudi Arabia. Saudi medical journal, 2004, 25(1), 64-70.

Al-Asmari AK; Islam M; Al-Zahrani AM. In vitro analysis of the anticancer properties of scorpion venom in colorectal and breast cancer cell lines. OncolLett. 2016;11(2):1256–1262. doi:10.3892/ ol.2015.4036

Al-Asmari, A. K.; Riyasdeen, A.; Abbasmanthiri, R.; Arshaduddin, M.; Al-Harthi, F. A., Scorpion (Androctonus bicolor) venom exhibits cytotoxicity and induces cell cycle arrest and apoptosis in breast and colorectal cancer cell lines. Indian Journal of Pharmacology 2016, 48 (5), 537-543

Asher V; Sowter H; Shaw R; Bali A; Khan R. Eag and HERG potassium channels as novel therapeutic targets in cancer. World J SurgOncol, 2010; 8:113. https:// doi.org/10.1186/1477-7819-8-113

Bustin SA; Li SR; Dorudi S. Expression of the Ca2C activated chloride channel genes CLCA1 and CLCA2 is downregulated in human colorectal cancer. DNA Cell Biol. 2001; 20:331–338. doi:10.1089/ 10445490152122442

Zhang, Y.Y.; Wu, L.C.; Wang, Z.P.; Wang, Z.X.; Jia, Q.; Jiang, G.S.; Zhang, W.D. Antiproliferation effect of polypeptide extracted from scorpion venom on human prostate cancer cells in vitro. J. Clin. Med. Res. 2009, 1, 24–31.

Diss, J. K. J.; Stewart, D.; Pani, F.; Foster, C. S.; Walker, M. M.; Patel, A.; Djamgoz, M. B. A. A potential novel marker for human prostate cancer: voltage-gated sodium channel expression in vivo. Prostate cancer and prostatic diseases, 2005, 8 (3), 266–273

Nakajima, T.; Kubota, N.; Tsutsumi, T.; Oguri, A.; Imuta, H.; Jo, T.; Nagata, T. Eicosapentaenoic acid inhibits voltage gated sodium channels and invasiveness in prostate cancer cells. British journal of pharmacology, 2009, 156 (3), 420–431. https:// doi.org/10.1111/j.1476-5381.2008.00059.x

Zhang, Y. Y.; Wu, L. C.; Wang, Z. P.; Wang, Z. X.; Jia, Q.; Jiang, G. S.; Zhang, W. D. Anti-proliferation effect of polypeptide extracted from scorpion venom on human prostate cancer cells in vitro. Journal of clinical

medicine research, 2009, 1 (1), 24–31.

Al-Asmari, A.K.; Islam, M.; Al-Zahrani, A.M., In vitro analysis of the anticancer properties of scorpion venom in colorectal and breast cancer cell lines. Oncology letters, 2016, 11 (2), 1256–1262 https:// doi.org/10.3892/ol.2015.4036

Onkal R; Djamgoz MB. Molecular pharmacology of voltage-gated sodium channel expression in metastatic disease: clinical potential of neonatal Nav1.5 in breast cancer. Eur J Pharmacol 2009; 625:206–19. https:// doi.org/10.1016/j.ejphar.2009.08.040

Fraser SP; Salvador V; Manning EA; Mizal J; Altun S, Raza M, Berridge RJ, Djamgoz MB. Contribution of functional voltage-gated Naþ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: I. Lateral motility. J Cell Physiol 2003; 195:479–87. https://doi.org/10.1002/jcp.10312

Mycielska ME; Fraser SP; Szatkowski M; Djamgoz MB. Contribution of functional voltage-gated Naþ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: II. Secretory membrane activity. J Cell Physiol 2003; 195:461–9 https://doi.org/10.1002/jcp.10265

Diss JK; Stewart D; Pani F; Foster CS; Walker MM; Patel A; Djamgoz MB. A potential novel marker for human prostate cancer: voltage-gated sodium channel expression in vivo. Prostate Cancer Prostatic Dis 2005; 8:266–73. https://doi.org/10.1038/sj.pcan. 4500796

Almaaytah A; Tarazi S; Mhaidat N; Al-Balas Q; Mukattash TL: Mauriporin, a Novel Cationic alpha Helical Peptide with Selective Cytotoxic Activity Against Prostate Cancer Cell Lines from the Venom of the Scorpion Androctonus mauritanicus. International Journal of Peptide Research and Therapeutics 2013; 19(4): 281-93. https://doi.org/ 10.1007/s10989-013-9350-3

Zhang, W. D.; Cui, Y. Z.; Yao, C. F.; Jia, Q.; Song, S. Q.; Wang, Z. X.; Qiang, D. Polypeptide extract from scorpion venom inhibits angiogenesis and angiogenesis-dependent tumor growth. Chinese pharmacological bulletin, 2005, 22, 708–711.

Almaaytah A; Tarazi S; Mhaidat N; Al-Balas Q; Mukattash T. Mauriporin, a novel cationic -helical peptide with selective cytotoxic activity against prostate cancer cell lines from the venom of the scorpion Androctonus mauritanicus. Int J Peptide Res Ther 2013; 19:291–3. https://doi.org/10.1007/s10989- 013-9350-3

Akef, H.; Kotb, N.; Abo-Elmatty, D.; Salem, S. Anti proliferative effects of Androctonus amoreuxi Scorpion and Cerastes cerastes snake venoms on human prostate cancer cells. Journal of cancer

prevention, 2017, 22, 40–46. 10.15430/JCP.2017.22.1.40

de Souza, B. M.; da Silva, A. V.; Resende, V. M.; Arcuri, H. A.; Dos Santos Cabrera, M. P.; Ruggiero Neto, J.; Palma, M. S., Characterization of two novel polyfunctional mastoparan peptides from the venom of the social wasp Polybia paulista. Peptides 2009, 30 (8), 1387-95. https://doi.org/10.1016/j.peptides. 2009.05.008

Wang, K. R.; Zhang, B. Z.; Zhang, W.; Yan, J. X.; Li, J.; Wang, R., Antitumor effects, cell selectivity and structure-activity relationship of a novel antimicrobial peptide polybia-MPI. Peptides 2008, 29 (6), 963-8. https://doi.org/10.1016/j.peptides.2008.01.015

Ferlay J; Soerjomataram I; Dikshit R; Eser S; Mathers C; Rebelo M; Parkin D, Forman D, Bray F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer, 2014, 136: E359–E386. https://doi.org/ 10.1002/ijc.29210

Long H; Bundy B; Grendys E. Randomized phase III trial of cisplatin with or without topotecan in carcinoma of the uterine cervix: A Gynecologic Oncology Group Study. J ClinOncol, 2005, 23(21): 4626–4633

Wong F; Woo C; Hsu A; Tan B. The anti-cancer activities of Vernoniaamygdalina extract in human breast cancer cell lines are mediated through caspase dependent and p53-independent pathways. PLoS ONE, 2013, 8(10): e78021. https://doi.org/10.1371/ journal.pone.0078021

Alhakamy NA; Fahmy UA; Eldin SM; Ahmed OA; Aldawsari HM; Okbazghi SZ; Alfaleh MA; Abdulaal WH; Alamoudi AJ; Mady FM. Scorpion Venom Functionalized Quercetin Phytosomes for Breast Cancer Management: In Vitro Response Surface Optimization and Anticancer Activity against MCF-7 Cells. Polymers. 2022 Jan;14(1):93. https://doi.org/ 10.3390/polym14010093

Díaz-García A; Morier-Díaz L; Frion-Herrera Y; RodríguezSánchez H; Caballero-Lorenzo Y; Mendoza-Llanes D; Riquenes-Garlobo Y; Fraga Castro J. In vitro anticancer effect of venom from

Cuban scorpion Rhopalurusjunceus against a panel of human cancer cell lines. J Venom Res, 2013, 4: 5–12.

Díaz-García A; Ruiz-Fuentes J; Rodríguez-Sánchez H; FragaCastro J. Rhopalurusjunceus scorpion venom induces apoptosis in the triple negative human breast cancer cell line MDA-MB-231. J Venom Res, 2017, 8: 9–13

Lopez-Charcas, O.; Espinosa, A.; Alfaro, A.; Herrera Carrillo, Z.; RamirezCordero, B.; Cortes-Reynosa, P. The invasiveness of human cervical cancer associated to the function of NaV1.6 channels is mediated by MMP-2 activity. Sci. Rep., 2018, 8 (1),

doi: 10.1038/s41598-018-31364-y

Ramírez A; Vera E; Gamboa-Domínguez A; Lambert P; Gariglio P; Camacho J. Calcium-activated potassium channels as potential early markers of human cervical cancer. OncolLett. 2018; 15 (5):7249– 7254. doi:10.3892/ol.2018.8187

Han X; Wang F; Yao W; et al. Heat shock proteins and p53 play a critical role in K+ channel-mediated tumor cell proliferation and apoptosis. Apoptosis. 2007; 12(10):1837–1846. doi:10.1007/s10495- 007-0101-9

Bernardes-Oliveira, E.; Farias, K.J.S.; Gomes, D.L.; de Araújo, J.M.G.; da Silva, W.D.; Rocha, H.A.O.; Donadi, E.A.; de Fernandes-Pedrosa, M.F.; de Crispim, J.C.O. Tityusserrulatus Scorpion Venom Induces Apoptosis in Cervical Cancer Cell Lines. Evid. Based Complementary Altern. Med. 2019, 2019, 1–8. https:/ /doi.org/10.1155/2019/5131042 [CrossRef]

Wang, J.; Peng, Y.; Wang, Z.; Chai, X.; Lv, Z.; Song, Q. Venom from the scorpion Heterometrusliangi inhibits HeLa cell proliferation by inducing p21 expression. Biologia 2018, 73, 1099–1108. [CrossRef]

Asher V; Sowter H; Shaw R; Bali A; Khan R. Eag and HERG potassium channels as novel therapeutic targets in cancer. World J SurgOncol 2010; 8:113 https:// doi.org/10.1186/1477-7819-8-113

Schwab A; Reinhardt J; Schneider SW; Gassner B; Schuricht B. K(þ) channel-dependent migration of fibroblasts and human melanoma cells. Cell PhysiolBiochem 1999; 9:126–132. https://doi.org/ 10.1159/000016309

Quast SA; Berger A; Buttstädt N; Friebel K; Schönherr R. General Sensitization of Melanoma Cells for TRAIL-Induced Apoptosis by the Potassium Channel Inhibitor TRAM-34 Depends on Release of SMAC. PLoS ONE. 2012, 7: e39290. doi:10.1371/ journal.pone.0039290

Kurbanov BM; Fecker LF; Geilen CC; Sterry W; Eberle J. Resistance of melanoma cells to TRAIL does not result from upregulation of antiapoptotic proteins by NF-kappaB but is related to downregulation of initiator caspases and DR4. Oncogene. 2007; 26: 3364– 3377. https://doi.org/10.1038/sj.onc.1210134

Norberg E; Orrenius S; Zhivotovsky B. Mitochondrial regulation of cell death: Processing of apoptosis inducing factor (AIF). BiochemBiophy Res Comm. 2010; 396: 95–100. https://doi.org/10.1016/ j.bbrc.2010.02.163

Leanza, L.; Romio, M.; Becker, K.; Azzolini, M.; Trentin, L.; Managò, A. Direct Pharmacological Targeting of a Mitochondrial Ion Channel Selectively Kills Tumor Cells In Vivo. Cancer Cell, 2017, 31 (4), 516–531. doi: 10.1016/j.ccell.2017.03.003

Venturini, E.; Leanza, L.; Azzolini, M.; Kadow, S.; Mattarei, A.; Weller, M. Targeting the Potassium Channel Kv1.3 Kills Glioblastoma Cells. Neurosignals, 2017, 25 (1), 26–38. doi: 10.1159/000480643

Checchetto, V., Prosdocimi, E., and Leanza, L. Mitochondrial Kv1.3: a New Target in Cancer Biology? Cell Physiol. Biochem., 2019, 53 (S1), 52–62. doi: 10.33594/ 000000195

Sonoda, Y.; Hada, N.; Kaneda, T.; Suzuki, T.; Ohshio, T.; Takeda, T.; Kasahara, T., A synthetic glycosphingolipid-induced antiproliferative effect in melanoma cells is associated with suppression of FAK, Akt, and Erk activation. Biological and Pharmaceutical Bulletin 2008, 31 (2008), 1279-1283

Bradbury, M. W.; Deane, R., Permeability of the blood brain barrier to lead. Neurotoxicology 1993, 14 (2-3), 131-6.

Khamessi, O.; Ben Mabrouk, H.; ElFessi-Magouri, R.; Kharrat, R. RK1, the first very short peptide from Buthusoccitanustunetanus inhibits tumor cell migration, proliferation and angiogenesis. Biochem. Biophys. Res. Commun. 2018, 499, 1–7. [CrossRef]

Ullrich N; Sontheimer H. Biophysical and pharmacological characterization of chloride currents in human astrocytoma cells. Am J Physiol 1996; 270:C1511–21. https://doi.org/10.1152/ajpcell. 1996.270.5. C1511

Ullrich N; Gillespie GY; Sontheimer H. Human astrocytoma cells express a unique chloride current. Neuroreport 1996; 7:1020–4 10.1097/00001756- 199604100-00013

Das Gupta S; Debnath A; Saha A; Giri B; Tripathi G; Vedasiromani JR; Gomes A; Aparna Gomes. Indian scorpion (H. bengalensis) venom induced antiproliferative and apoptogenic activity against human leukemic cell lines U937 and K562. Leuk res. 2007; 31:817. https://doi.org/10.1016/ j.leukres.2006.06.004

Song X; Zhang G; Sun A; Guo J; Tian Z; Wang H; Liu Y. Scorpion venom component III inhibits cell proliferation by modulating NF-kappa B activation in human leukemia cells. ExpTher Med 2012; 4:146–50 https://doi.org/10.3892/etm.2012.548

Asher V; Sowter H; Shaw R; Bali A; Khan R. Eag and HERG potassium channels as novel therapeutic targets in cancer. World J SurgOncol 2010; 8:113. https:// doi.org/10.1186/1477-7819-8-113

Hayden, M. S.; West, A. P.; Ghosh, S. NF-ê B and the immune response. Oncogene, 2006, 25(51), 6758-6780. https://doi.org/10.1038/sj.onc.1209943

Incesu, Z.; Caliskan, F.; Zeytinoglu, H. Cytotoxic and gelatinolytic activities of Mesobuthus Gibbosus

(Brullé, 1832) venom. Revista CENIC. Ciencias Biológicas, 2005, 36.

Escárcega RO; Fuentes-Alexandro S; García Carrasco M; Gatica A; Zamora A. The transcription factor nuclear factor- k B and cancer. ClinOncol. 2007; 19: 154-161. https://doi.org/10.1016/j.clon.2006.11.013

Gupta, S. D.; Debnath, A.; Saha, A.; Giri, B.; Tripathi, G.; Vedasiromoni, J. R.; Gomes, A. Indian black scorpion (Heterometrusbengalensis Koch) venom induced antiproliferative and apoptogenice activity against human leukemic cell lines U937 and K562. Leukemia Research, 2007, 31(6), 817-825. https:// doi.org/10.1016/j.leukres.2006.06.004

Hui, L.; Leung, K.; Chen, H.M. The combined effects of antibacterial peptide cecropin A and anti-cancer agents on leukemia cells. Anticancer Res. 2002, 22, 2811–2816.

Killion, J.J.; Dunn, J.D. Differential cytolysis of murine spleen, bone-marrow and leukemia cells by melittin reveals differences in membrane topography. Biochem. Biophys. Res. Commun. 1986, 139, 222–227. https://doi.org/10.1016/S0006-291X(86)80102-4

Said YM; El-Gamel NE; Ali SA; Mohamed AF. Evaluation of Human Wharton’s Jelly-Derived Mesenchymal Stem Cells Conditioning Medium (hWJ MSCs-CM) or Scorpion Venom Breast Cancer Cell Line In Vitro. Journal of Gastrointestinal Cancer. 2022 Jan 6:1-4.

Zhang YY; Wu LC; Wang ZP; Wang ZX; Jia Q; Jiang GS; Zhang WD. Anti-proliferation effect of polypeptide extracted from scorpion venom on human prostate cancer cells in vitro. J Clin Med Res, 2009, 1:24–31. 10.4021/jocmr2009.01.1220

Song X; Zhang G; Sun A; et al. Scorpion venom component III inhibits cell proliferation by modulating NF-kappaB activation in human leukemia cells. ExpTher Med. 2012;4(1):146–150. doi:10.3892/ etm.2012.548

Gomes, A.; Bhattacharjee, P.; Mishra, R.; Biswas, A. K.; Dasgupta, S. C.; Giri, B., Anticancer potential of animal venoms and toxins. Indian Journal of Experimental Biology 2010, 48 (2), 93-103. http:// nopr.niscair.res.in/handle/123456789/7333

Gasanov, S. E.; Dagda, R. K.; Rael, E. D., Snake Venom Cytotoxins, Phospholipase A(2)s, and Zn(2+)- dependent Metalloproteinases: Mechanisms of Action and Pharmacological Relevance. Journal of Clinical Toxicology 2014, 4 (1), 1000181.

Braganca, B. M.; Patel, N. T.; Badrinath, P. G., Isolation and properties of a cobra venom factor selectively cytotoxic to Yoshida sarcoma cells. BiochimicaetBiophysicaActa 1967, 136 (3), 508- 520. https://doi.org/10.1016/0304-4165(67)90009-8

Gomes, A.; Bhattacharjee, P.; Mishra, R.; Biswas, A. K.; Dasgupta, S. C.; Giri, B., Anticancer potential of animal venoms and toxins. Indian Journal of Experimental Biology 2010, 48 (2), 93-103. http:// nopr.niscair.res.in/handle/123456789/7333

Lyons SA; O’Neal J; Sontheimer H. Chlorotoxin, a scorpion-derived peptide, specifically binds to gliomas and tumors of neuroectodermal origin. Glia. 2002; 39(2):162-73. https://doi.org/10.1002/glia.10083

Veiseh M; Gabikian P; Bahrami SB. Tumor paint: a cholorotoxin: L Cy5.5 bioconjugate for interaoperative visualization of cancer foci. Cancer Res. 2007; 67: 6882-8. https://doi.org/10.1158/0008-5472.CAN-06- 3948

Kesavan K; Ratliff J; Johnson EW; Dahlberg W; Asara JM; Misra P. Annexin A2 is a molecular target for TM601, a peptide with tumor-targeting and antiangiogenic effects. J Biol Chem. 2010; 285:4366– 4374. https://doi.org/10.1074/jbc.M109.066092

Soroceanu L; Gillespie Y; Khazaeli MB; Sontheimer H. Use of chlorotoxin for targeting of primary brain tumors. Cancer Res 1998; 58:4871–9

Xu, T.; Fan, Z.; Li, W.; Dietel, B.; Wu, Y.; Beckmann, M. W.; Savaskan, N. E. Identification of two novel Chlorotoxin derivatives CA4 and CTX-23 with chemotherapeutic and anti-angiogenic potential. Scientific reports, 2016, 6(1), 1-16. https://doi.org/ 10.1038/srep19799

Rjeibi I; Mabrouk K; Mosrati H; Berenguer C; Mejdoub H; Villard C; et al. Purification, synthesis and characterization of AaCtx, the first chlorotoxin like peptide from Androctonusaustralis scorpion venom. Peptides 2011; 32(4): 656-63. https://doi.org/ 10.1016/j.peptides.2011.01.015

Song Y; Gong K; Yan H; Hong W; Wang L; Wu Y; et al. Sj7170, a unique dual-Function peptide with a specific áChymotrypsin inhibitory activity and a potent tumor activating effect from scorpion venom. Journal of Biological Chemistry 2014; 289(17): 11667- 80. https://doi.org/10.1074/jbc.M113.540419

Du J; Fu Y; Wang J; Liang A: Adenovirus-mediated expression of BmK CT suppresses growth and invasion of rat C6 glioma cells. Biotechnology Letters 2013; 35(6): 861-70. https://doi.org/10.1007/s10529-013- 1167-9

Leanza, L.; Romio, M.; Becker, K.; Azzolini, M.; Trentin, L.; Managò, A. Direct Pharmacological Targeting of a Mitochondrial Ion Channel Selectively Kills Tumor Cells In Vivo. Cancer Cell, 2017, 31 (4), 516–531. doi: 10.1016/j.ccell.2017.03.003

Venturini, E.; Leanza, L.; Azzolini, M.; Kadow, S.; Mattarei, A.; Weller, M. Targeting the Potassium Channel Kv1.3 Kills Glioblastoma Cells. Neurosignals,

, 25 (1), 26–38. doi: 10.1159/000480643

Checchetto, V.; Prosdocimi, E.; Leanza, L. Mitochondrial Kv1.3: a New Target in Cancer Biology? Cell Physiol. Biochem. 2019, 53 (S1), 52–62. doi: 10.33594/ 000000195

Lozano-Trujillo, L. A.; Garzón-Perdomo, D. K.; Vargas, A. C.; de los Reyes, L. M.; Avila-Rodriguez, M. F.; Gay, O. T.; Turner, L. F. Cytotoxic effects of blue scorpion venom (Rhopalurus junceus) in a glioblastoma cell line model. Current Pharmaceutical Biotechnology, 2021, 22(5), 636-645. https://doi.org/ 10.2174/1389201021666200717092207

Diaz-Garcia, A.; Morier-Diaz, L.; Frion-Herrera, Y.; Rodriguez-Sanchez, H.; Caballero-Lorenzo, Y.; Mendoza-Llanes, D.; Riquenes-Garlobo, Y.; Fraga Castro, J.A. In vitro anticancer effect of venom from

Cuban scorpion Rhopalurusjunceus against a panel of human cancer cell lines. J. Venom. Res. 2013, 4, 5– 12.

Guo, X.; Ma, C.; Du, Q.; Wei, R.; Wang, L.; Zhou, M.; Shaw, C. Two peptides, TsAP-1 and TsAP-2, from the venom of the Brazilian yellow scorpion, Tityus serrulatus: evaluation of their antimicrobial and anticancer activities. Biochimie, 2013, 95(9), 1784- 1794. https://doi.org/10.1016/j.biochi.2013.06.003

Liu YF; Hu J; Zhang JH; Wang SL; Wu CF. Isolation purification, and N terminal partial sequence of an anti tumor-analgesic peptide from the venom of the Chinese scorpion ButhusmartensiiKarsch. Prep BiochemBiotechnol. 2002; 32:317–327. doi:10.1081/ PB-120015456

Northcott PA; Dubuc AM; Pfister S; Taylor MD. Molecular subgroups of medulloblastoma. Expert Rev Neurother. 2012; 12:871–884. doi:10.1586/ern.12.66

Asher V; Sowter H; Shaw R; Bali A; Khan R. Eag and HERG potassium channels as novel therapeutic targets in cancer. World J SurgOncol, 2010; 8:113. https:// doi.org/10.1186/1477-7819-8-113

Escalona, M. P.; Batista, C. V.; Cassulini, R. R.; Rios, M. S.; Coronas, F. I.; Possani, L. D. A proteomic analysis of the early secondary molecular effects caused by Cn2 scorpion toxin on neuroblastoma cells. J. Proteom., 2014, 111, 212–223. doi: 10.1016/ j.jprot.2014.04.035

Zargan J; Sajad M; Umar S; et al. Scorpion (Androctonuscrassicauda) venom limits growth of transformed cells (SH-SY5Y and MCF-7) by cytotoxicity and cell cycle arrest. ExpMolPathol. 2011; 91(1):447–454. doi:10.1016/j.yexmp.2011.04.008

Zargan J; Umar S; Sajad M; et al. Scorpion venom (Odontobuthusdoriae) induces apoptosis by depolarization of mitochondria and reduces S-phase population in human breast cancer cells (MCF-7).

Toxicol in Vitro. 2011; 25(8):1748–1756. doi:10.1016/j. tiv.2011.09.002

Zargan J; Mir S; Umar S; et al. Scorpion (Odontobuthusdoriae) venom induces apoptosis and inhibits DNA synthesis in human neuroblastoma cells. Mol Cell Biochem. 2010; 348(1–2):173–181. doi:10.1007/s11010-010-0652-x

Calderon, L. A.; Sobrinho, J. C.; Zaqueo, K. D.; de Moura, A. A.; Grabner, A. N.; Mazzi, M. V.; Marcussi, S.; Nomizo, A.; Fernandes, C. F.; Zuliani, J. P.; Carvalho, B. M.; da Silva, S. L.; Stabeli, R. G.; Soares, A. M., Antitumoral activity of snake venom proteins: new trends in cancer therapy. BioMed Research International, 2014, 203639. https://doi.org/10.1155/ 2014/203639

Moriya, R.; Uehara, T.; Nomura, Y.; Mechanism of nitric oxide-induced apoptosis in human neuroblastoma SH-SY5Y cells. FEBS Lett., 2000, 484, 253–260. https:// doi.org/10.1016/S0014-5793(00)02167-0

Dhakshinamoorthy, S.; Sridharan, S.R.; Li, L.; Ng, P.Y.; Boxer, L.M.; Porter, A.G. Protein/DNA arrays identify nitric oxide-regulated Cis-element and trans factor activities some of which govern neuroblastoma cell viability. Nucleic Acids Res., 2007, 35 (16), 5439– 5451. https://doi.org/10.1016/S0014-5793(00)02167-0

Zargan, J.; Sajad, M.; Umar, S.; Naime, M.; Ali, S.; Khan, H.A. Scorpion (Odontobuthusdoriae) venom induces apoptosis and inhibits DNA synthesis in human neuroblastoma cells. Mol. Cell. Biochem. 2011, 384, 173–181. https://doi.org/10.1007/s11010-010-0652-x

Ahmed B. Effect of Cinnamon Oil and Scorpion Venom on Oral Squamous Cell Carcinoma Cell Line (In vitro study). Egyptian Dental Journal. 2022 Jan 1;68(1):533-41. 10.21608/edj.2021.107325.1879

Moslah W, Aissaoui-Zid D, Aboudou S, Abdelkafi Koubaa Z, Potier-Cartereau M, Lemettre A, ELBini Dhouib I, Marrakchi N, Gigmes D, Vandier C, Luis J. Strengthening Anti-Glioblastoma Effect by Multi Branched Dendrimers Design of a Scorpion Venom

Tetrapeptide. Molecules. 2022 Jan;27(3):806. https:// doi.org/10.3390/molecules27030806

Benrazzouk K, Ait Laaradia M, Ait Sidi Brahim M, Ouhaddou S, Ouhammou A, Chait A, Bekkouche K, Markouk M, Larhsini M. In vivo evaluation of antivenom activity of Adenocarpus anagyrifolius methanolic extract against Hottentotta gentili scorpion venom. Toxin Reviews. 2022 Feb 8:1-3. https://doi.org/ 10.1080/15569543.2022.2033778

Liu HM, Li C, Cao B, Jiang Y, Han L, Xu R, Lin J, Zhang D. The molecular mechanism of chronic stress affecting the occurrence and development of breast cancer and potential drug therapy. Translational Oncology. 2022 Jan 1;15(1):101281.

Published

2022-01-30

How to Cite

THERAPEUTIC POTENTIAL OF SCORPION VENOM IN CANCER TREATMENT AS ANTICANCER AGENT: A REVIEW. (2022). Journal of Forensic Medicine & Toxicology, 38(2), 105–117. Retrieved from https://acspublisher.com/journals/index.php/jfmt/article/view/17888