Advances in genomics for fruit improvement
Keywords:
Genomics, proteomics, metabolomics, molecular mechanism, phenotypeAbstract
The omic tools are being used for chancing the quality and nutritional composition of fruit, besides they also play a significant role in resistance breeding, shelf life enhancement and productivity. The use of genomics, proteomics, transcriptomics and metabolomics provide insights to the molecular mechanisms of flowering, fruit development, ripening, insect resistance, herbicides tolerance, etc. Genomics and ascompanying technologies enable systems biology approach toward deciphering complex interactions between genes, proteins and metabolites for resulting phenotype.
Downloads
References
Adams, M.D., Kelley, J.M., Gocayne, J.D., Dubnick, M., Polymeropoulos, M.H., Xiao, H., Merril, C.R., Wu, A., Olde, B., Moreno, R.F., et al. 1991. Complementary DNA sequencing: expressed sequence tags and human genome project. Science, 252:1651-1656.
Bally, I. S. E., Lu, P. and Johnson, P. 2009. Mango breeding In: Breeding Plantation Tree Crops: Tropical Species (eds S.M. Jain and P.M. Priyadarshan), Springer N.Y., pp. 51-82.
Buonassisi, D., Colombo, M., Migliaro, D. et al. 2017. Euphytica 213:103. https://doi.org/10.1007/s10681-017-1882-8. Calenge, F., Faure, A., Goerre, M., Gebhardt, C., Van de Weg, W.
E., Parisi, L. and Durel, C. E. 2004. Quantitative Trait Loci (QTL) analysis reveals both broad-spectrum and isolate specific QTL for scab resistance in an apple progeny challenged with eight isolates of Venturia inaequalis. Phytopathology, 94: 370-379.
Devoghalaere, F., Thomas Doucen et al. 2012. A genomics approach to understanding the role of auxin in apple (Malus x domestica) fruit size control. BMC Plant Biology, 12:7; doi:10.1186/1471-2229-12-7.
Feng, X., An, Y., Zheng, J., Sun, M. and Wang, L. 2016. Proteomics and SSH analyses of ALA-promoted fruit coloration and evidence for the Involvement of a MADS-box gene, MdMADS1. Frontiers in Plant Science, 7: 1615. doi:10.3389/ fpls.2016.01615.
Jaillon, O., Aury, J.M., Noel, B. et al. 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 449: 463–7.
Klee, Harry J. 2010. Improving the flavor of fresh fruits: genomics, biochemistry and biotechnology. New Phytologist, 187: 44– 56.
Luge, T. and Sauer, S. 2016. Generating sample specific databases for mass spectrometry based proteomic analysis by using RNA sequencing methods. Molecular Biology, 1394:219-232.
Michael, T. P. and Jackson, S. 2013. The First 50 plant genomes. Plant Genome, 6:1-7. doi:10.3835/plantgenome 2013.03.0001in
Sobolev, Anatoly Petrovich et al. 2015. Untargeted NMR-based methodology in the study of fruit metabolites. Molecules, 20(3): 4088-4108; doi:10.3390/molecules20034088.
Wang, Z., Gerstein, M. and Snyder, M. 2009. RNA seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet., 10(1):57-63; doi:10.1038/nrg2482.
Wegrzyn, Jill et al. 2012. Uniform standards for genome databases in forest and fruit trees. Tree Genetics & Genomes, 8: 549-557; 10.1007/s11295-012-0541-4.
Yamamoto, T. 2016. Breeding, genetics, and genomics of fruit trees. Breeding Science, 66: 1-2.
Younis, K., Ahmad, S. and Badpa, A. 2015. Malnutrition: causes and strategies. Journal of Food Processing and Technology, 6:434. doi: 10.4172/2157-7110.1000434.
Zuriaga, E., Romero, C., Blanca, J.M. and Badenes, M.L. 2018. Resistance to Plum Pox Virus (PPV) in apricot (Prunus armeniaca L.) is associated with down-regulation of two MATHd genes. BMC Plant Biology 27, 18:25; doi: 10.1186/ s12870-018-1237-1.