Effects of Bisphosphonates on Bone Fracture Healing: An Overview on New Preclinical Animal and Clinical Studies

Authors

  • Soodeh Alidadi Department of Patho biology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
  • Ahmad Oryan Department of Pathobiology, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran

Keywords:

Bisphosphonate, Bone healing, Fracture, Osteonecrosis, Osteoporosis

Abstract

This review covers the bisphosphonates (BPs) characteristics as a treatment choice for osteoporosis and their discrepancies as per  available literature. In addition, the current study reviewed the effects of these antiresorptive compounds on bone fracture healing in  experimental animal model studies. BPs have been commonly used in treating various skeletal diseases such as Paget’s disease and  osteoporosis. BPs reduce bone regeneration or resorption by inhibiting the osteoclast activities and thus, maintain or enhance bone  mineral density when administered to osteoporotic patients. Given the critical importance of bone resorption during the bone healing  process, the use of this class of medications is doubtful and controversial. Although some studies confirmed the efficient application  of BPs, concerns about the possibility of delayed or impaired bone healing, non-union, or mal-union after BP administration have been  raised in some other studies. Moreover, long-term BP administration like zoledronate is associated with some side effects such as atypical  femoral fracture and osteonecrosis of the jaw. As a result, it can be accomplished that dose, timing, and duration of BP administration  are important factors that establish the efficacy of BPs on the healing of different types of bone defects such as tooth extraction, spinal  fusion, calvarial bone, and long bones. Further studies are needed for finding more safe and efficient substitutes for BPs to minimize  or eliminate their undesirable effects.  

Downloads

Download data is not yet available.

References

Aki, T., Hashimoto, K., Uozumi, H., Saito, M., Sugawara, K., Suzuki, M., Hamada, S., Ito, A., & Itoi, E. (2021). Morphological and morphometrical analyses of fracture-healing sites of an atypical femoral fracture in patients with and without long

term bisphosphonate treatment for osteoporosis: A report of two cases. Tohoku Journal of Experimental Medicine, 253(4), 261-267.

Alidadi, S. (2020). Nanoscale bioceramics in bone tissue engineering An overview. Indian Journal of Veterinary Science and Biotechnology, 16(2,3,&4), 7-11.

Alidadi, S., Oryan, A., Bigham-Sadegh, A., & Moshiri, A. (2017). Role of platelet gel embedded within gelatin scaffold on healing of experimentally induced critical-sized radial bone defects in rats. International Orthopaedics, 41(4), 805-812.

Anderson, P.A., & Freedman, B.A. (2020). Bisphosphonates do not impair spinal fusion. Neurosurgery Focus, 49(2), E13. Barton, D.W., Smith, C.T., Piple, A.S., Moskal, S.A., & Carmouche, J.J. (2020). Timing of bisphosphonate initiation after fracture: What does the data really say? Geriatric Orthopaedic Surgery and Rehabilitation, 11, 1-5.

Demircan, S., & Isler, S.C. (2021). Histopathological examination of the effects of local and systemic bisphosphonate usage in bone graft applications on bone healing. Journal of Maxillofacial and Oral Surgery, 20(1), 144-148.

Gutta, R., & Louis, P.J. (2007). Bisphosphonates and osteonecrosis of the jaws: science and rationale. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 104, 186-193.

Hauser, M., Siegrist, M., Denzer, A., Saulacic, N., Grosjean, J., Bohner, M., & Hofstetter, W. (2018). Bisphosphonates reduce biomaterial turnover in healing of critical-size rat femoral defects. Journal of Orthopaedic Surgery, 26(3), 1–10.

Hirota, M., Hayakawa, T., Yoshinari, M., Ametani, A., Shima, T., Monden, Y., Ozawa, T., Sato, M., Koyama, C., Tamai, N., Iwai, T., & Tohnai, I. (2012). Hydroxyapatite coating for titanium fibre mesh scaffold enhances osteoblast activity and bone tissue formation. International Journal of Oral and Maxillofacial Surgery, 41(10), 1304-1309.

Hirota, M., Shima, T., Sato, I., Ozawa, T., Iwai, T., Ametani, A., Sato, M., Noishiki, Y., Ogawa, T., Hayakawa, T., & Tohnai, I. (2016). Development of a biointegrated mandibular reconstruction device consisting of bone compatible titanium fiber mesh scaffold. Biomaterials, 75, 223-236.

Hirota, S., & Ogawa, T. (2019). Impaired osteoblastic behavior and function on saliva-contaminated titanium and its restoration by UV treatment. Materials Science & Engineering. C, Materials for Biological Applications, 100, 165-177.

Hokugo, A., Kanayama, K., Sun, S., Morinaga, K., Sun, Y., Wu, Q., Sasaki, H., Okawa, H., Evans, C., Ebetino, F.H., Lundy, M.W., Sadrerafi, K., McKenna, C.E., & Nishimura, I. (2019). Rescue bisphosphonate treatment of alveolar bone improves extraction socket healing and reduces osteonecrosis in zoledronate-treated mice. Bone, 123, 115-128.

Im, G.I., Qureshi, S.A., Kenney, J., Rubash, HE & Shanbhag, AS (2004). Osteoblast proliferation and maturation by bisphosphonates. Biomaterials, 25(18), 4105- 4115.

Kates, S.L., & Ackert-Bicknell, C.L. (2016). How do bisphosphonates affect fracture healing?. Injury, 47 Suppl 1(0 1), S65-S68. Kiely, P., Ward, K., Bellemore C,M., Briody, J., Cowell, C.T., & Little, DG (2007). Bisphosphonate rescue in distraction osteogenesis: a case series. Journal of Pediatric Orthopedics, 27(4), 467-471. Koyama, C., Hirota, M., Okamoto, Y., Iwai, T., Ogawa, T., Hayakawa, T., & Mitsudo, K. (2020). A nitrogen-containing bisphosphonate inhibits osteoblast attachment and impairs bone healing in bone-compatible scaffold. Journal of the Mechanical Behavior of Biomedical Materials, 104, 103635.

Lechner, J., von Baehr, V., & Zimmermann, B. (2021). Osteonecrosis of the jaw beyond bisphosphonates: Are there any unknown local risk factors? Clinical, Cosmetic and Investigational Dentistry, 13, 21-37.

Li, C.L., Lu, W.W., Seneviratne, C.J., Leung, W.K., Zwahlen, R.A., & Zheng, L.W. (2016). Role of periodontal disease in bisphosphonate-related osteonecrosis of the jaws in ovariectomized rats. Clinical Oral Implants Research, 27(1), 1-6.

Maruotti, N., Corrado, A., Neve, A., & Cantatore, F.P. (2012). Bisphosphonates: effects on osteoblast. European Journal of Clinical Pharmacology, 68(7), 1013-1018.

Matos, M. A., Tannuri, U., & Guarniero, R. (2010). The effect of zoledronate during bone healing. Journal of Orthopaedics and Traumatology, 11(1), 7-12.

Mauceri, R., Panzarella, V., Maniscalco, L., Bedogni, A., Licata, M.E., Albanese, A., Toia, F., Cumbo, E., Mazzola, G., Di Fede, O., & Campisi, G. (2018). Conservative surgical treatment of bisphosphonate-related osteonecrosis of the jaw with Er,Cr:YSGG laser and platelet-rich plasma: A longitudinal study. BioMed Research International, 2018, 3982540.

Miyazawa, K., Torii, Y., Tabuchi, M., Mizuno, M., Yoshizako, M., Minamoto, C., Kawatani, M., Osada, H., Maeda, H., & Goto, S. (2020). Osteoclast inhibitors for bone fracture healing in mice with high-turnover osteoporosis. Journal of Hard Tissue Biology, 29(4), 255-262.

Moon, Y.J., Jeong, S., & Lee, K. (2021). BMP-2 promotes bone formation in bone defects in which bone remodeling is suppressed by long-term and high-dose zoledronic acid. Research Square, https://doi.org/10.21203/rs.3.rs-684348/v2.

Naidu, A., Dechow, P.C., Spears, R., Wright, J.M., Kessler, H.P., & Opperman, L.A. (2008). The effects of bisphosphonates on osteoblasts in vitro. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, 106(1), 5-13.

Nakagawa, T., Tsuka, S., Aonuma, F., Nodai, T., Munemasa, T., Tamura, A., Mukaibo, T., Kondo, Y., Masaki, C., & Hosokawa, R. (2021). Effects of metformin on the prevention of bisphosphonate related osteonecrosis of the jaw-like lesions in rats. Journal of Prosthodontic Research, 65(2), 219-224.

Oryan, A., Alidadi, S., & Moshiri, A. (2013). Current concerns regarding healing of bone defects. Hard Tissue, 2, 13.

Oryan, A., Alidadi, S., Moshiri, A. & Bigham-Sadegh, A. (2014). Bone morphogenetic proteins: a powerful osteoinductive

compound with non-negligible side effects and limitations. Biofactors, 40, 459-81.

Oryan, A., Alidadi, S., & Moshiri, A. (2015). Osteosarcoma: current concepts, challenges and future directions. Current Orthopaedic Practice, 26, 181-198.

Oryan, A., & Sahvieh, S. (2021). Effects of bisphosphonates on osteoporosis: Focus on zoledronate. Life Sciences, 264, 118681. Otto, M., Lux, C., Schlittenbauer, T., Halling, F., & Ziebart, T. (2021). Geranyl-geraniol addition affects potency of bisphosphonates-a comparison in vitro promising a therapeutic approach for bisphosphonate-associated osteonecrosis of the jaw and oral wound healing. Oral and Maxillofacial Surgery, 10.1007/s10006-021-00982-8.

Plotkin, L.I., Weinstein, R.S., Parfitt, A.M., Roberson, P.K., Manolagas, S.C., & Bellido T. (1999). Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. Journal of Clinical Investigation, 104(10), 1363-1374.

Ribatti, D., Maruotti, N., Nico, B., Longo, V., Mangieri, D., Vacca, A., & Cantatore, F.P. (2008). Clodronate inhibits angiogenesis in vitro and in vivo. Oncology Reports, 19(5), 1109-1112.

Ruggiero, S.L., Dodson, T.B., Fantasia, J., Goodday, R., Aghaloo, T., Mehrotra, B., O’Ryan, F., & American Association of Oral and Maxillofacial Surgeons (2014). American Association of Oral and Maxillofacial Surgeons position paper on medication

related osteonecrosis of the jaw--2014 update. Journal of Oral and Maxillofacial Surgery, 72(10), 1938-1956.

Santini, D., Vincenzi, B., Dicuonzo, G., Avvisati, G., Massacesi, C., Battistoni, F., Gavasci, M., Rocci, L., Tirindelli, M.C., Altomare, V., Tocchini, M., Bonsignori, M., & Tonini, G. (2003). Zoledronic

acid induces significant and long-lasting modifications of circulating angiogenic factors in cancer patients. Clinical Cancer Research, 9(8), 2893-2897.

Shudo, A., Kishimoto, H., Takaoka, K., & Noguchi, K. (2018). Long-term oral bisphosphonates delay healing after tooth extraction: a single institutional prospective study. Osteoporosis International, 29(10), 2315-2321.

Suva, L.J., Cooper, A., Watts, A.E., Ebetino, F.H., Price, J., & Gaddy, D. (2021). Bisphosphonates in veterinary medicine: The new horizon for use. Bone, 142, 115711.

Toker, H., Ozdemir, H., Ozer, H., & Eren, K. (2012). Alendronate enhances osseous healing in a rat calvarial defect model. Archives of Oral Biology, 57, 1545-1550.

Vannala, R., Palaian, S., & Shankar, P.R. (2020). Therapeutic Dimensions of Bisphosphonates: A Clinical Update. International Journal of Preventive Medicine, 11, 166.

Wilkinson J.M. (2020). The use of bisphosphonates to meet orthopaedic challenges. Bone, 137, 115443.

Yang, X.J., Wang, F.Q., Lu, C.B., Zou, J.W., Hu, J.B., Yang, Z., Sang, H.X., & Zhang, Y. (2020). Modulation of bone formation and resorption using a novel zoledronic acid loaded gelatin nanoparticles integrated porous titanium scaffold: an in vitro and in vivo study. Biomedical Materials (Bristol, England), 15(5), 055013.

Yu, R.Q., Wang, J.Y., Rao, N.J., Huo, L., Zheng, L.W., Yu, R.Q., Wang, J.Y., Rao, N.J., Huo, L., & Zheng, L.W. (2021). Effects of bisphosphonates on osseointegration of dental implants in rabbit model. BioMed Research International, 2021, 6689564.

Downloads

Published

2022-01-10

How to Cite

Alidadi, S., & Oryan, A. (2022). Effects of Bisphosphonates on Bone Fracture Healing: An Overview on New Preclinical Animal and Clinical Studies. Indian Journal of Veterinary Sciences and Biotechnology, 18(1), 1–6. Retrieved from https://acspublisher.com/journals/index.php/ijvsbt/article/view/2225