Spermbots: A Promising Futuristic Innovation in Assisted  Reproductive Technology

Authors

  • Ghulam Rasool Bhat Division of Veterinary Clinical Complex ,Sher-e-Kashmir University of Agricultural Sciences and Technology
  • Farooz Ahmad Lone Division of Animal Reproduction, Gynaecology and Obstetrics Sher-e-Kashmir University of Agricultural Sciences and Technology
  • Nafis Ibni Assad Division of Animal Reproduction, Gynaecology and Obstetrics Sher-e-Kashmir University of Agricultural Sciences and Technology

DOI:

https://doi.org/10.48165/ijar.2023.44.02.3

Keywords:

Assisted reproduction, cargo, robotics, spermbot, micromotors

Abstract

Spermbots are robotic sperms formed out of sperm cells conjugated to artificial microstructures, having potential  applications ranging from biomedical processes, drug delivery systems, in situ real time imagery and assisted reproduction.  The robotic sperm can act as an exploratory microdevice in biological networks. Incorporation of a biological entity like  sperm into microstructures under the environment of magnetic or electric fields helps in shape templating and carrying  chemotherapeutic agents to target sites. Besides its role in drug delivery systems, spermbots can potentially contribute in  combating infertility, especially in oligo-zoospermia and necro-zoospermia in males. Numerous checkpoints may impede  sperm cells to reach the oocyte in vivo. Spermbots bypass these sites and carry sperm to oocyte. Targeted delivery always  requires interventions of natural functional aspects of living systems. Sperm flagellum, being a biological motor in nature,  can be harnessed as a driving force in spermbots to ensure delivery of fertile sperm cells with impaired motile machinery to  the target. Moreover, the technology has a potential to unravel sperm migration patterns and understanding the processes  in vivo. After a review of documented literature on possible use of spermbot technology in assisted reproduction, we  hereby discuss the application of this new and innovative technology in humans and animals. The paper also highlights  certain shortfalls in the widespread application of this cargo delivery technology in assisted reproduction. 

References

Astbury, W.T. and Saha, N.N. (1953). Structure of Algal Flagella. Nature, 1953, 171: 280–83.

Baccetti, B. and Afzelius, B. A. (1976). The biology of the sperm cell. Monogr. Dev. Biol., 10: 1-254.

Chen, C., Chang, X., Angsantikul, P., Li, J., De Ávila, B.E., Karshalev, E., Liu, W., Mou, F., He, S. and Castillo, R. (2017). Chemotactic Guidance of Synthetic Organic/Inorganic Payloads Functionalized Sperm Micromotors. Adv. Biosyst.,

: 1700160.

Diaz, E.S., Kong, M. and Morales, P. (2007). Effect of fibronectin on proteasome activity, acrosome reaction, tyrosine phos phorylation and intracellular calcium concentrations of human sperm. Hum. Reprod. 22: 1420–1430.

Khalil, I.S.M., Klingner, A., Hamed, Y., Magdanz, V., Toubar, M. and Misra, S. (2019). Characterization of Flagellar Propulsion of Soft Microrobotic Sperm in a Viscous Heterogeneous Medium. Front. Robot. AI, 6: 65.

Khalil, I.S.M., Magdanz, V., Simmchen, J., Klingner, A. and Misra, S. (2020) Resemblance between motile and magneti cally actuated sperm cells. Appl. Phys. Lett., 116:063702.

Khalil, I.S.M., Tabak, A.F., Hamed, Y., Mitwally, M.E., Tawakol, M., Klingner, A. and Sitti, M. (2018). Swimming back and forth using planar flagellar propulsion at low Reynolds numbers. Adv. Sci., 5 (2): 170046.

Khalil, Islam S. M., Dijkslag, Herman C., Abelmann, L. and Sarthak M (2014). “MagnetoSperm: A microrobot that nav igates using weak magnetic fields”. Applied Physics Letters, 1 04 (22):223701. 10.1063/1.4880035

Koleoso, M., Feng, X., Y. Xue, Q. Li., Munshi, T. and Chen. X. (2020). Micro/nanoscale magnetic robots for biomedical applications. Materials Today Bio.,8:100085.

Macnab, R.M. (1999). The bacterial flagellum: Reversible rotary propellor and type III export apparatus. J. Bacteriol., 181: 7149–7153.

Magdanz, V. and Schmidt, O. G. (2014). Spermbots: potential impact for drug delivery and assisted reproductive technol ogies. Expert Opin. Drug Deliv., 11(8): 1125-1129.

Magdanz, V., Khalil, I. S. M., Simmchen, J., Guilherme, P., Furtado, S.M, Johannes, G., Haifeng, Xu., Anke, K., Azaam, A., Medina-Sánchez, M., Schmidt, O. G. and Misra S. (2020). IRONSperm: Sperm-templated soft magnetic microrobots. Sci. Adv., 6: eaba5855.

Magdanz, V., Medina-Sánchez, M., Schwarz, L., Xu, H., Elgeti, J. and Schmidt, O.G. (2017). Spermatozoa as Functional Components of Robotic Microswimmers. Adv. Mater, 29: 1606301.

Magdanz, Veronika., Sanchez, Samuel. and Schmidt, O. G. (2013). “Development of a Sperm- Flagella Driven Micro-Bio-Robot”. Adv. Mater., 25 (45): 6581- 6588.

Medina-Sánchez M., Schwarz, L., Meyer, A. K., Hebenstreit, F. and Schmidt, O. G. (2015). Cellular cargo delivery: Toward assisted fertilization by sperm-carrying micromotors. Nano Lett.16: 555–561.

Medina-Sánchez, M., Lukas, Schwarz., Meyer, Anne K., Hebenstreit, F. and Schmidt, O. G. (2016). “Cellular Cargo Delivery: Toward Assisted Fertilization by Sperm-Carrying Micromotors”. Nano Lett., 16 (1): 555-561

Nosrati, R., Graham, P.J., Zhang, B., Riordon, J., Lagunov, A., Hannam, T.G., Escobedo, C., Jarvi, K. and Sinton, D. (2017). Microfluidics for sperm analysis and selection. Nat. Rev. Urol., 14:707-730.

Ridzewski, C., Li, M., Dong, B. and Magdanz, V. (2020). Gelatin microcartridges for onboard activation and antioxidant protection of sperm. ACS Appl. Bio. Mater., 3(3), 1616-1627.

Singh, A. K., Ansari, M. H. D., Mahajan, M., Srivastava, S., Kahyap, S., Dwivedi, P., Panit V. and Katha, U. (2020). Sperm Cell Driven Microrobots—Emerging Opportunities and Challenges for Biologically Inspired Robotic Design. Micromachines, 11(4) https://www.mdpi.com/2072-

X/11/4/448

Singh, A.V., Patil, R., Thombre, D.K. and Gade, W.N. (2013). Micro-nanopatterning as tool to study the role of physico chemical properties on cell–surface interactions. J. Biomed. Mater. Res., 101: 3019–3032.

Xu, H., Medina-Sánchez, M., Magdanz, V., Schwarz, L., Hebenstreit, F. and Schmidt, O.G. (2018). Sperm-Hybrid Micromotor for Targeted Drug Delivery. ACS Nano,12: 327–337, doi:10.1021/acsnano.7b06398

Xu, H., Medina-Sánchez, M., Magdanz, V., Schwarz, L., Hebenstreit, F. and Schmidt, O. G. (2017). “Sperm-hybrid micromotor for drug delivery in the female reproductive tract”. ACS Nano 12 (1): 327-337

Xu, H., Medina-Sánchez, M., Maitz, M. F., Werner, C. and Schmidt, O. G. (2020). Sperm micromotors for cargo deliv ery through flowing blood. ACS nano, 14(3): 2982-2993.

Downloads

Published

2023-12-29

How to Cite

Bhat, G.R., Lone, F.A., & Assad, N.I. (2023). Spermbots: A Promising Futuristic Innovation in Assisted  Reproductive Technology. The Indian Journal of Animal Reproduction, 44(2), 14–17. https://doi.org/10.48165/ijar.2023.44.02.3