Exploring obesity through Animal Models: Insights and innovations
DOI:
https://doi.org/10.48165/jlas.2025.8.1.4Keywords:
Obesity, Animal Models, Rodents, Zebrafish, Transgenic, Overweight, High-fat dietAbstract
The rising incidence of obesity poses a major global health issue, shaped by a complex interaction of genetic, environmental, and behavioral elements. This review focuses on the important function of various animal models in the study of obesity, emphasizing their contributions to comprehending the underlying mechanisms of this intricate condition. Rodent models, especially genetically modified strains such as ob/ob and db/db mice, have revealed crucial insights into the hormonal and genetic pathways that govern energy balance. Furthermore, models of diet-induced obesity and new organisms like zebrafish and C. elegans present innovative methods for investigating the impacts of high-fat diets and genetic differences. The review also ad dresses the limitations of existing animal models, including their in ability to completely mimic the human experience of obesity due to gene-environment interactions and varying metabolic responses. By integrating findings from a range of animal models, this research seeks to deepen the understanding of the causes of obesity and aid in formulating specific therapeutic approaches, ultimately tackling the escalating obesity crisis.
Downloads
References
Arble, D. M., Sandoval, D. A., Turek, F. W., Woods, S. C., & Seeley, R. J. (2015). Metabolic effects of bariatric surgery in mouse models of circadian disruption. International Journal
of Obesity, 39(8), 1310–1318. https://doi.org/10.1038/ ijo.2015.54
Barrett, P., Mercer, J. G., & Morgan, P. J. (2016). Preclinical models for obesity research. DMM Disease Models and Mechanisms, 9(11), 1245–1255. https://doi.org/10.1242/ dmm.026443
Bastard, J. P., & Fève, B. (2012). Physiology and physiopathol ogy of adipose tissue. Physiology and Physiopathology of Adipose Tissue, 1–437. https://doi.org/10.1007/978-2- 8178-0343-2
Bastías-Pérez, M., Serra, D., & Herrero, L. (2020). Dietary options for rodents in the study of obesity. Nutrients, 12(11), 1–18. https://doi.org/10.3390/nu12113234
Bourke, C. D., Berkley, J. A., & Prendergast, A. J. (2016). Immune Dysfunction as a Cause and Consequence of Malnutrition. Trends in Immunology, 37(6), 386–398. https://doi. org/10.1016/j.it.2016.04.003
Bray, M. S., & Young, M. E. (2007). Circadian rhythms in the development of obesity: Potential role for the circadian clock within the adipocyte. Obesity Reviews, 8(2), 169–181. https://doi.org/10.1111/j.1467-789X.2006.00277.x
Chalvon-Demersay, T., Blachier, F., Tomé, D., & Blais, A. (2017). Animal Models for the Study of the Relationships between Diet and Obesity: A Focus on Dietary Protein and Estrogen Deficiency. Frontiers in Nutrition, 4(March), 1–13. https:// doi.org/10.3389/fnut.2017.00005
Chaudhary, R., Suhan, T. K., Wu, C., Alzamrooni, A., & Abdel-, A. (2024). Comparative Analysis of Housing Temperature Impact on Heart Failure with Preserved Ejection Fraction in J vs N.
Cho, S., Choi, Y., Park, S., & Park, T. (2012). Carvacrol pre vents diet-induced obesity by modulating gene expressions involved in adipogenesis and inflammation in mice fed with a high-fat diet. Journal of Nutritional Biochemistry, 23(2), 192–201. https://doi.org/10.1016/j.jnutbio.2010.11.016
de Moura e Dias, M., dos Reis, S. A., da Conceição, L. L., Sediyama, C. M. N. de O., Pereira, S. S., de Oliveira, L. L., Gouveia Peluzio, M. do C., Martinez, J. A., & Milagro, F. I. (2021). Diet-induced obesity in animal models: points to consider and influence on metabolic markers. Diabetology and Metabolic Syndrome, 13(1). https://doi.org/10.1186/ s13098-021-00647-2
De Vos, W. M., Tilg, H., Van Hul, M., & Cani, P. D. (2022). Gut microbiome and health: mechanistic insights. Gut, 71(5), 1020–1032. https://doi.org/10.1136/gutjnl-2021-326789
Domínguez-Oliva, A., Hernández-Ávalos, I., Martínez-Burnes, J., Olmos-Hernández, A., Verduzco-Mendoza, A., & Mota Rojas, D. (2023). The Importance of Animal Models in
Biomedical Research: Current Insights and Applications. Animals, 13(7), 1–24. https://doi.org/10.3390/ani13071223 Faillaci, F., Milosa, F., Critelli, R. M., Turola, E., Schepis, F., & Villa, E. (2018). Obese zebrafish: A small fish for a major human health condition. Animal Models and Experimental Medicine, 1(4), 255–265. https://doi.org/10.1002/ ame2.12042
Franco-Tormo, M. J., Salas-Crisostomo, M., Rocha, N. B., Budde, H., Machado, S., & Murillo-Rodríguez, E. (2018). CRISPR/ Cas9, the Powerful New Genome-Editing Tool for Putative Therapeutics in Obesity. Journal of Molecular Neuroscience, 65(1), 10–16. https://doi.org/10.1007/s12031-018-1076-4
Halpern, B., & Mendes, T. B. (n.d.). and related disorders : unveiling myths , facts , and presumptions. 1–10. https:// doi.org/10.20945/2359-3997000000322
Herrera, B. M., & Lindgren, C. M. (2010). The genetics of obe sity. Current Diabetes Reports, 10(6), 498–505. https://doi. org/10.1007/s11892-010-0153-z
Kazura, W., & Michalczyk, K. (2023). and Proteins and the Gut Microbiota Condition and Obesity.
Kim, N. H., Choi, S. K., Kim, S. J., Moon, P. D., Lim, H. S., Choi, I. Y., Na, H. J., An, H. J., Myung, N. Y., Jeong, H. J., Um, J. Y., Hong, S. H., & Kim, H. M. (2008). Green tea seed oil reduces weight gain in C57BL/6J mice and influences adi pocyte differentiation by suppressing peroxisome prolifera tor-activated receptor-γ. Pflugers Archiv European Journal of Physiology, 457(2), 293–302. https://doi.org/10.1007/ s00424-008-0537-y
Kleinert, M., Clemmensen, C., Hofmann, S. M., Moore, M. C., Renner, S., Woods, S. C., Huypens, P., Beckers, J., De Angelis, M. H., Schürmann, A., Bakhti, M., Klingenspor, M., Heiman, M., Cherrington, A. D., Ristow, M., Lickert, H., Wolf, E., Havel, P. J., Müller, T. D., & Tschöp, M. H. (2018). Animal models of obesity and diabetes mellitus. Nature Reviews Endocrinology, 14(3), 140–162. https://doi. org/10.1038/nrendo.2017.161
Lutz, T. A., & Woods, S. C. (2012). Overview of animal models of obesity. Current Protocols in Pharmacology, SUPPL.58, 1–18. https://doi.org/10.1002/0471141755.ph0561s58
Ma, C., & Zhang, J. M. (2010). Animal Models of Pain. Humana Press. https://books.google.co.in/books?id=DQqRSQAA CAAJ
Martins, T., Ferreira, T., Nascimento-Gonçalves, E., Castro Ribeiro, C., Lemos, S., Rosa, E., Antunes, L. M., & Oliveira, P. A. (2022). Obesity Rodent Models Applied to Research with Food Products and Natural Compounds. Obesities, 2(2), 171–204. https://doi.org/10.3390/obesities2020015
McNay, D. E. G., & Speakman, J. R. (2013). High fat diet causes rebound weight gain. Molecular Metabolism, 2(2), 103– 108. https://doi.org/10.1016/j.molmet.2012.10.003
Musselman, L. P., & Kühnlein, R. P. (2018). Drosophila as a model to study obesity and metabolic disease. Journal of Experimental Biology, 121. https://doi.org/10.1242/ jeb.163881
Oka, T., Nishimura, Y., Zang, L., Hirano, M., Shimada, Y., Wang, Z., Umemoto, N., Kuroyanagi, J., Nishimura, N., & Tanaka, T. (2010). Diet-induced obesity in zebrafish shares common pathophysiological pathways with mammalian obesity. BMC Physiology, 10(1). https://doi.org/10.1186/1472- 6793-10-21
Patel, V., Joharapurkar, A., Dhanesha, N., Kshirsagar, S., Patel, K., Bahekar, R., Shah, G., & Jain, M. (2013). Co-agonist of glu cagon and GLP-1 reduces cholesterol and improves insulin sensitivity independent of its effect on appetite and body weight in diet-induced obese C57 mice. Canadian Journal of Physiology and Pharmacology, 91(12), 1009–1015. https://doi.org/10.1139/cjpp-2013-0189
Paxman, J. R., Richardson, J. C., Dettmar, P. W., & Corfe, B. M. (2008). Daily ingestion of alginate reduces energy intake in free-living subjects. Appetite, 51(3), 713–719. https://doi. org/10.1016/j.appet.2008.06.013
Pomp, D. (1999). Animal models of obesity. Molecular Medicine Today, 5(10), 459–460. https://doi.org/10.1016/S1357- 4310(99)01580-4
Renner, S., Blutke, A., Clauss, S., Deeg, C. A., Kemter, E., Merkus, D., Wanke, R., & Wolf, E. (2020). Porcine models for study ing complications and organ crosstalk in diabetes mellitus. Cell and Tissue Research, 380(2), 341–378. https://doi. org/10.1007/s00441-019-03158-9
Reshma, A., Tamilanban, T., Chitra, V., Subramaniyan, V., Gupta, G., Fuloria, N. K., Sekar, M., Fuloria, S., Sahu, R., Narayanan, J., Chakravarthy, S., & Selvaraj, S. (2023). Anti obesity effects of olivetol in adult zebrafish model induced by short-term high-fat diet. Scientific Reports, 13(1), 1–21. https://doi.org/10.1038/s41598-023-44462-3
Russa, D. La, Barberio, L., Marrone, A., & Perri, A. (2023). Caloric Restriction Mitigates Kidney Fibrosis in an Aged and Obese Rat Model.
Russo, C., Maugeri, A., Musumeci, L., De Sarro, G., Cirmi, S., & Navarra, M. (2023). Inflammation and Obesity: The Pharmacological Role of Flavonoids in the Zebrafish Model. International Journal of Molecular Sciences, 24(3). https:// doi.org/10.3390/ijms24032899
Schachtschneider, K. M., Schwind, R. M., Newson, J., Kinachtchouk, N., Rizko, M., Mendoza-Elias, N., Grippo, P., Principe, D. R., Park, A., Overgaard, N. H., Jungersen,
28 Journal of Laboratory Animal Science, 8(1): , Jan-Jun 2025
G., Garcia, K. D., Maker, A. V., Rund, L. A., Ozer, H., Gaba, R. C., & Schook, L. B. (2017). The oncopig cancer model: An innovative large animal translational oncology plat form. Frontiers in Oncology, 7(AUG), 1–18. https://doi. org/10.3389/fonc.2017.00190
Speakman, J., Hambly, C., Mitchell, S., & Król, E. (2007). Animal models of obesity. Obesity Reviews, 8(SUPPL. 1), 55–61. https://doi.org/10.1111/j.1467-789X.2007.00319.x
Spiegelman, B. M., & Flier, J. S. (2001). Obesity and the Regulation Review of Energy Balance total fast of approximately 150 days! This impressive energy reserve is due both to the high energy content of triglycerides versus polysaccharides, and the fact. Cell, 104, 531–543.
Stoccoro, A., & Coppedè, F. (2021). Mitochondrial dna meth ylation and human diseases. International Journal of Molecular Sciences, 22(9), 1–27. https://doi.org/10.3390/ ijms22094594
Subhadra, M., Mir, D. A., Ankita, K., Sindunathy, M., Kishore, H. D., Ravichandiran, V., & Balamurugan, K. (2024). Exploring diabesity pathophysiology through proteomic analysis using Caenorhabditis elegans. Frontiers in
Endocrinology, 15(October), 1–16. https://doi.org/10.3389/ fendo.2024.1383520
Tilg, H., Adolph, T. E., & Moschen, A. R. (2021). Multiple Parallel Hits Hypothesis in Nonalcoholic Fatty Liver Disease: Revisited After a Decade. Hepatology, 73(2), 833–842. https://doi.org/10.1002/hep.31518
Trinh, I., & Boulianne, G. L. (2013). Modeling obesity and its associated disorders in Drosophila. Physiology, 28(2), 117– 124. https://doi.org/10.1152/physiol.00025.2012
Varga, O., Harangi, M., Olsson, I. A. S., & Hansen, A. K. (2010). Contribution of animal models to the understanding of the metabolic syndrome: A systematic overview. Obesity Reviews, 11(11), 792–807. https://doi.org/10.1111/j.1467- 789X.2009.00667.x
Vickers, S. P., Jackson, H. C., & Cheetham, S. C. (2011). The util ity of animal models to evaluate novel anti-obesity agents. British Journal of Pharmacology, 164(4), 1248–1262. https://doi.org/10.1111/j.1476-5381.2011.01245.x
Zang, L., Maddison, L. A., & Chen, W. (2018). Zebrafish as a model for obesity and diabetes. Frontiers in Cell and Developmental Biology, 6(AUG), 1–13. https://doi. org/10.3389/fcell.2018.00091