Phytochemical evaluation and HPTLC fingerprint profile of various extracts of Cassia tora

Authors

  • M Thirumala Facility Manager, Primate Research Laboratory, Indian Institute of Science, Bengaluru 560012. Author
  • N B Shridhar Associate Professor, Department of Veterinary Pharmacology and Toxicology, Veterinary College, Shivamogga 577204. Author
  • J S Sanganal Professor and Head, Department of Veterinary Pharmacology and Toxicology, Veterinary College, Hebbal, Bengaluru 560024 Author
  • H D N Swamy Professor, Department of Veterinary Pathology, Veterinary College, Hebbal, Bengaluru 560024. Author
  • S G Ramachandra Director, ICMR-National Animal Resource Facility for Biomedical Research, Department of Health Research, Ministry of Health and Family Welfare, Govt. of India, Genome Valley, Shamirpet, Hyderabad 500101. Author

DOI:

https://doi.org/10.48165/jlas.2023.6.2.2

Keywords:

Cassia tora, Phytochemical analysis, HPTLC, Fingerprint.

Abstract

The objective of the present study is to evaluate phytochemical composition and the high-performance thin layer  chromatography (HPTLC) fingerprint profile of methanol, ethanol, ethyl acetate, acetone, and aqueous extracts of  medicinally useful plant Cassia tora. The CAMAG HPTLC system was used for the fingerprint profiling of various  extracts of C. tora using the mobile phase toluene: ethyl acetate: glacial acetate (55: 45: 3 v/v/v). The profile showed  that the various extracts of C. tora exhibited several peaks with different Rf values when visualized at 254 nm and 366  nm. The results from HPTLC fingerprint scanned at wavelength 550 nm revealed the presence of 18, 13, 15, 12 and 14  phytoconstituents in methanol, ethanol, ethyl acetate, acetone, and aqueous extracts, respectively. The result of HPTLC  analysis of various extracts of C. tora shows that the maximum number of chemical constituents present in methanolic  extract in comparison to ethanol, ethyl acetate, acetone, and aqueous extracts of C. tora in given solvent system of toluene,  ethyl acetate and glacial acetate. Further bioactivity guided fractionation and analysis of isolated chemical entity can reveal  the active constituents in the various extracts of C. tora. Phytochemical analysis revealed the presence of carbohydrates,  proteins. glycosides, sapnonins, flavonoids, phenolics and tannins, phytosterols and triterpenoids. 

Downloads

Download data is not yet available.

References

1. Arya, V., Yadav, S., Kumar, S. and Yadav, J. P., (2010). Antimicrobial activity of Cassia occidentalis L (Leaf) against various human pathogenic microbes. Life Sci. Med. Res.

2. Association of Official Analytical Chemists (AOAC), (2005). Official Methods of Analysis. Edn. 18th., Washington D. C. USA

3. Attimarad, M., Ahmed, K. K., Aldhubaib B. E. and Harsha S., (2011). High-performance thin layer chromatography: A powerful analytical technique in pharmaceutical drug discovery, Pharm Methods, 2(2): 71–75.

4. Baravalia, Y., (2010). Evaluation of anti-inflammatory and hepatoprotective potency of a selected medicinal plant. Ph. D. thesis, Saurashtra University, Rajkot, India

5. Bhattacharya, S. and Zaman, M. K., (2009). Pharmacognostical evaluation of Zanthoxylum nitidum root. J. Phcog., 1 (2): 15-21

6. Chanda, S., Nagani K. and Parekh, J., (2010). Assessment of quality of Manilkara hexandra (roxb.) dubard leaf (sapotaceae): Pharmacognostical and physicochemical profile. J. Phcog., 2 (13): 520-524

7. Ekwueme, F. N., Oje, O. A., Ozoemena, N. F. and Nwodo, O. F. C., (2015). Qualitative and quantitative phytochemical screening of the aqueous leaf extract of Senna mimosoides: Its effect in in vivo leukocyte mobilization induced by inflammatory stimulus. Int. J. Curr. Microbiol. App. Sci., 4 (5): 1176-1188

8. Eleazu, C. O., Eleazu, K. C., Awa, E. and Chukwuma, S. C., (2012). Comparative study of the phytochemical composition of the leaves of five Nigerian medicinal plants. J. Biotechnol. Pharm. Res., 3 (2): 42-46

9. Finar, I. L., (1959). Organic Chemistry. Edn. 2nd. The English Language Book Society, London, pp 280-431

10. Harborne, A. J., (1998). Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis. Edn. 1st. Springers Science Business Media

11. Hasan, R. U., Prabhat, P., Shafaat, K. and Khan, R., (2013). Phytochemical investigation and evaluation of antioxidant activity of fruit of Solanum indicum Linn. Int. J. Pharm. Pharm. Sci., 5 (3): 237-242

12. Kaviraj A. G., (1993). Astang Sangrah, Krishnadas Academy Orientalia Publishers and Distributors, Varanasi, pp 4-32.

13. Khandelwal, K. R., (2004). Practical Pharmacognosy Techniques and Experiments, Edn. 12th., Nirali Prakashan, New Delhi., pp 149-156

14. Krishnaraju, A. V., Rao, T. V. N., Sundararaju, D., Vanisree, M., Tsay, H. S. and Subbaraju, G. V., (2005). Assessment of bioactivity of Indian medicinal plants using brine shrimp (Artemia salina) lethality assay. Int. J. App. Sci. Eng., 3 (2): 125-134

15. Kokate, C. K., (2007). Text Book of Pharmacognosy. Nirali publications, New Delhi., pp 1- 73

16. Mauji, R., Abdin, M. Z., Khan, M. A. and Prabhakar, J., (2011). HPTLC fingerprint analysis: A Quality control of Authentication of Herbal Phytochemicals. Springer Verlag Berlin Heidelberg 105.

17. Middletone, H., (1956). Systematic Qualitative Analysis. Edn. 3rd. Edward Arnnold Publishers Ltd., London, pp 91-94

18. Murugesan, S. and Bhuvaneswari, S., (2016). HPTLC fingerprint profile of methanol extract of the marine red alga Portieria hornemannii (Lyngbye) (Silva). Int. J. Adv. Pharma. 5 (3): 61-65

19. Musa, K. Y., Katsayal, A, U., Ahmed, A., Mohammed, Z. and Danmalam, U. H., (2006). Pharmacognostic investigation of the leaves of Gisekia pharnacioides. Afr. J. Biotechnol., 5 (10): 956-957

20. Patwardhan, B., Vaidya, A. D. B. and Chorghade, M. S., (2004). Ayurveda and natural product drug discovery. Curr. Sci., 86 (6): 789-799

21. Peach, T. and Trancey, M. V., (1955). Modern Methods in Plant Analysis. Edn. 1st.Springer Verlog, Berlin, pp 387

22. Raju, A., (2014). Anticancer activity of certain Drosera L. species. Ph.D. thesis, Jawaharlal Nehru Technological University, Hyderabad, India

23. Rosenthaler, L., (1930). Chemical Investigations of Plants. Edn. 1st. G. Bell and Sons, London, pp 23-132

24. Seasotia, L., SIiwach, P., Malik, A., BAI, S., Bharti, P. and Dalal, S., (2014). Phytochemical evaluation and HPTLC fingerprint profile of Cassia fistula. Int. J. Adv. Pharm. Biol. Chem., 3 (3): 604-611

25. Sermakkani, M. and Thangapandian, V., (2013). Anti inflammatory potential of Cassia italica (mill) Lam. ex. fw. andrews leaves. Int. J. Pharm. Pharm. Sci., 5 (1): 18- 22

26. Sharma R. K. and Bhagwan D., (1996). Charak Samhita. Edn 4, Vol. 2, Chowkhamba Sanskrit Series, Varanasi, pp 17-101

27. Sharma, N., Gupta, P., Singh, A. and Rao, C. V., (2014). Pharmacognostical, phytochemical investigations and HPTLC fingerprinting of Pentapetes phoenicea L. leaves. Indian J. Nat. prod. Reso. 5 (2): pp 158-163

28. Singh, A. P., (2006). Short review: Distribution of steroid like compounds in plant flora. Pharmacogn. Mag., 2 (6): 87-89

29. Singh, R. and Singh, S., (2007). Evaluation of antioxidant potential of ethyl acetate extract/fractions of Acacia auricliformis. A. Cunn. Food Chem. Toxicol., 45 : 1216- 1223

30. Singleton, V. L., Orthofer, R. and Lamuela-Raventos, R. M., (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin– Ciocalteau reagent. Meth. Enzymol., 299: 152–178

31. Spangenberg, B., Poole, C. and Weins, C., 2011. Quantitative thin layer chromatography: A Practical Survey. Springer, Berlin, Germany

32. Sujogya K. P., Padhi, L. P. and Mohanty, G., (2011). Antibacterial activities and phytochemical analysis of Cassia fistula (Linn.) leaf. J Adv Pharm Technol Res., 2 (1): 62-67

33. Veerachari, U and Bopaiah, A. K., (2012). Phytochemical investigation of the ethanol, methanol and ethyl acetate leaf extracts of six Cassia species. Int. J. Pharm. Bio. Sci., 3 (2): 260-270.

Downloads

Published

2024-12-12

How to Cite

Phytochemical evaluation and HPTLC fingerprint profile of various extracts of Cassia tora . (2024). Journal of Laboratory Animal Science, 6(2), 5-17. https://doi.org/10.48165/jlas.2023.6.2.2