Role of Mushroom in the Bioremediation of heavy metals and Biodegradation of dyes
DOI:
https://doi.org/10.5958/2582-2683.2021.00029.0Keywords:
Mushroom, Bioremediation, Biodegradation, Heavy metals, DyesAbstract
Mushroom is multicellular, heterotrophic and achlorophyllous species that belongs to Basidiomycetes family and mycota kingdom. The present review paper discusses about bioremediation of heavy metals and biodegradation with mushroom diversity. The edible mushroom Lactarus deliciosus, Russula delica, Hizopogon roseolus are known to dissociate Cd, Cr, Cu, Pb and Zn. Agaricus bisporus assimilates heavy metals like Cr, Cu, Cd and Zn whereas Pulveroboletus amarellus absorbs Zn metal. Agaricus macrospores accumulate Cd metal. Pleurotus ostreatus absorbs more heavy metals like Cd, Hg, Zn and Cu. Volvariella volvaceace accumulates more Cu and Zn metal. Phanerochaete chrysosporium and Trametes versicolor can degrade wide variety of dyes like Azo dyes, heterocyclic dyes and other polymeric dyes. Phanerochaete chrysosporium and Trametes versicolor can degrade wide variety of dyes like Azo dyes, heterocyclic dyes and other polymeric dyes. Ganoderma lucidum extracted from hardwood stump is reported to degrade polycylic aromatic hydrocarbons (PAH’s) of penanthrene and pyrene. Phanerochaete chrysosporium degrades organic molecules polycyclic aromatic hydrocarbons (PAH’s), polychlorinated biphenyls dioxins, chlorophenols, chlorolignins, nitro cranditics and different pesticides like lindane, Atrazine, BTEX. Pleurotus florida, Pleurotus ostreatus and Pleorotus sajarcaju. The Pleurotus florida and Pleurotus sajorcaju are effective for degradation of bromophenol blue, brilliant green and methylated dye. Pleurotus pulmonaris BPSM 10 strain which degrades azo and triphenyl methane dyes like Napthol Blue Black, Orange G, Malachite green, Victoria Blue B, Phenol red, Congo red and comassive brilliant blue. The technology improves industrial degradation & remediation efficiency, prevents natural pollution and maintains ecosystems.
Downloads
References
Adenipekun, C. O. and Isikhuemhen, O. S. 2008, Bioremediation of engine oil polluted soil by the tropical white-rot fungus, Lentinus squarrosulus Mont. (Singer). Pakistan J. Biol. Sci., 11: 1634-1637.
Adenipekun,C. O. and Lawal, R. 2012. Uses of mushrooms in bioremediation: A review. Biotechnology and Molecular Biology Review, 7: 62-68.
AghizionInbakani, S., Nirmala, S. and Siva, R. 2015. Biodegradation of Congo red Dye by the Mushroom Tricholoma Species. International Journal of Life Sciences Research, 3: 57-62.
Akin, C., Munevver, C. and Mahmut, C. 2010. The Heavy Metal Content of Wild Edible Mushroom Samples Collected in Canakkale Province, Turkey Biology of Trace Elements, 134: 212-219.
Barr, D. and Aust, S. 1994. Mechanisms white rot fungi use to degrade pollutants. Environ. Sci. Technol., 28: 78-87. Costa, A. C. A. and Leite, S. G. C. 1991. Metal Biosorption by Sodium Alginate Immobilized Chlorella Hemisphere. Biotechnology Letter, 13: 559-562.
Daniel, J., Royse1, J. B. and Qi, T. 2017. Current Overview of Mushroom Production in the World. Edible and Medicinal Mushrooms: Technology and Applications, First Edition, Edited by: Diego Cunha, Zied and Arturo Pardo-Giménez, John Wiley & Sons Ltd, 5-13.
Demirbas, A. 2002. Metal Ion Uptake by Mushrooms from Natural and Artificially Enriched Soils. Food Chem., 78: 89-93. Diah, P., Indrianingsih, A. W. and Cici, D. H. 2017. Decolorization
and Degradation of Batik Dye Effluent using Ganoderma lucidum. IOP Conf. Series: Earth and Environmental Science, 101: 012034.
Gomes, D., Fragoso, L., Riger, C., Panek, A. and Eleutherio, E. 2002. Regulation of Cadmium Uptake by Saccharomyces
cerevisiae–Biochimica. Biophysica Acta, 1573: 21-25. Hyeon, W. K., Yun, H.Y., Sang, W. K., Soonok, K. and Hyeon-Su, Ro. 2014. Decolorization of Triphenylmethane Dyes by Wild Mushrooms. Biotechnology and Bioprocess Engineering, 19: 519-525.
Isikhuemhen, O. S., Anoliefo, G. and Oghale, O. 2003. Bioremediation of crude oil polluted soil by the white rot fungus, Pleurotus tuber-regium (Fr) Sing. Environ. Sci. Pollut. Res., 10: 108-112.
Isildak, O., Turkekul, I., Elmastas, M., Aboul, E. and Hassan Y. 2007. Bioaccumulation of Heavy Metals in Some Wild Grown Edible Mushrooms. Analytical Letters, 40: 1099-1116.
Kapoor, A., Viraraghavan, T. 1998. Biosorption of Heavy Metals on Aspergillus Niger: Effect of Pretreatment. Bioresources Technology, 63: 109.
Lasota,W. and Florezak, K. A. 1990. Effects of Toxic Metal on Protein Content of Mushrooms. Bromatol. Chem, Toksykol,, 22: 95-99.
Masaphy, S., Henis, Y. and Levanon, D. 1996. Manganese enhanced biotransformation of atrazine by the white rot fungus Pleurotus pulmonarius and its correlation with oxidation activity. Appl. Environ. Microbiol., 62: 3587-3593.
Mihaela, G., Peter, V. H. and Jim, M. 2007. Decoloration of Amaranth by the white rot fungus Trametes versicolor Part I Statistical analysis. Canadian Journal off Microbiology, 53: 313- 326.
Moreno-Garrido, 2008. Microalgae immobilization: current techniques and uses. Bioresour. Technol., 99: 3949-3964. Nikki, A., Preeti, V. and Sushil, K. S. 2018. Degradation of polycyclic aromatic hydrocarbons (phenanthrene and pyrene) by the ligninolytic fungi Ganoderma lucidum isolated from the hardwood stump. Bioresour. Bioprocess., 5: 1-9. Njoku, K. L., Yussuf, A., Akinola, M. O., Adesuyi, A. A., Jolaoso, A. O. and Adedokun, A. H. 2016, Mycoremediation of Petroleum Hydrocarbon Polluted soil by Pleurotus pulmonaris. Ethiopian Journal of Environmental Studies & Management, 9: 865- 875.
Novotny, C., Svobodova, K., Erbanova, P., Cajthaml, T., Kasinath, A., Lange, E. and Sasek, V. 2004. Ligninolytic fungi in bioremediation: extacellular enzyme production and degradation rate. Soil Biol. Biochem., 36:1545-1551.
Ogbo, M. E., Okhuoya, J. A. and Anaziah, O. C. 2006. Effect of different levels of spent lubricating oil on the growth of Pleurotus tuber-regium (Fries) Singer. Nig. J. Bot., 19: 266- 270.
Radhika, R., Roseline, G. J. and Joel, J. G. 2014. Decolourization of synthetic textile dyes using the edible mushroom fungi Pleurotus. Pakistan Journal Of Biological Sciences, 17: 248-253.
Sachin, G., Sudheer, K. A., Baby, S. and Moni, G. and Sunil, A. N. 2018. Role of Mushroom Fungi in Decolourization of Industrial Dyes and Degradation of Agrochemicals, B. P. Singh et al. eds: Biology of Macrofungi, Fungal Biology, Springer Nature Switzerland, pp. 177-190.
Role of Mushroom in the Bioremediation of heavy metals and Biodegradation of dyes
Sack, U. and Gunther, T. 1993. Metabolism of PAH by fungi and correction with extracellular enzymatic activities. J. Basic Microbiol, 33: 269-277.
Selvam, K., Swaminathan, K., Song, M. H. and Chae, K. S. 2002. Biological treatment of a pulp and paper industry effluent by Fomes lividus and Trametes versicolor. World J. Microbiol. Biotechnol., 18: 523-526.
Sharma, R., Rakesh, K. and Akhilesh, K. P. 2010. Dynamics of Acid Phosphatase Production of the Ectomycorrhizal Mushroom Cantharellus Tropicalis. Journal of Biotechnology, 15: 1563-1564.
Sharma, V. P., Sudheer, K. A., Yogesh, G., Manjit, S. and Shweta, K. 2017. Status of mushroom production in India. Mushroom Research, 26:111-120.
Tuzen, M. 2003. Determination of heavy metals in soil mushroom and plant samples by atomic absorption spectrometry. Micro-Chemical Journal, 74: 289-297.
Watkinson, S. C. and Eastwood, D. C. 2012. Wood decay fungus - an overview. Science Direct Topics, pp. 1-21.
Zhang, D., Gao, T., Pei, M. A., Luo Y. and Pengcheng, S. U. 2008. Bioaccumulation of heavy metal in wild growing mushrooms from Liangshan Yi Nationality Autonomous Prefecture, China. Journal of Natural Science, 3: 0267-06.
Zhu, F., Qu, L., Fan, W., Qiao, M., Hao, H. and Wang, X. 2010. Assessment of heavy metals in some wild edible mushrooms collected from Yunnan Province. China Environ. Monit., 6: 1725-1728.