Evaluation of training systems for growth, yield, photosynthetic activities and wine quality in Cabernet Sauvignon

Authors

  • PRAVEEN AUSARI Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya Gwalior

DOI:

https://doi.org/10.48165/

Keywords:

ethanol, fermentation, grape quality, sensory properties, wine grapes

Abstract

The present study revealed the impact of different training systems on growth, yield, photosynthetic activities, and wine quality of Cabernet Sauvignon grapevines. Three training systems- (Mini Y-trellis, Vertical Shoot Positioned (VSP) and Kniffin System) were assessed over a three-year period (2018-19 to 2020-21) in a vineyard located at ICAR- National Research Centre for Grapes, Pune. Results indicated significant differences among training systems in terms of growth, yield, and photosynthetic activity. Among three training system mini-Y trellis system had higher yield compared to Kniffin and VSP trellis system but wine quality was lower. Wine produced from Kniffin-trained vines exhibited superior quality attributes, including higher mallic acid, ethanol and improved sensory characteristics. The findings suggest that selecting an appropriate training system is crucial for optimizing vine performance and enhancing wine quality in Cabernet Sauvignon. This research provides valuable insights for viticulturists aiming to improve vineyard management practices and maximize the quality wine production.

Downloads

Download data is not yet available.

References

Anonymous 2024a. State of the world wine and wine sector in 2023. https://www.oiv.int/sites/default/files/2024-04/OIV_STATE_OF_THE_WORLD_VINE_AND_WINE_SECTOR_IN_2023.pdf

Anonymous 2024b. Area and Production of Horticulture crops for 2023-24 (2nd Advance Estimates). 2023-24_Second_Advance_Estimates.xlsx (live.com)

Ausari, P.K.; Gurjar, P.K.S.; Somkuwar, R.G.; Naruka, I.S.; Sharma, A.K. and Gharate, P.S. 2024. Effect of rootstocks on yield and wine quality of Sauvignon Blanc variety. Plant Archives, 24(1): 1477-1482.

Bem, B.P.; Bogo, A.; Everhart, S.E.; Casa, R.T.; Gonçalves, M.J.; Marcon Filho, J.L.; Rufato, L.; Silva, F.N.; Allebrandt, R. and Cunha, I.C. 2016. Effect of four training systems on the temporal dynamics of downy mildew in two grapevine cultivars in southern Brazil. Trop. Plant Path., 41: 370-379.

Bordelon, B.P.; Patrica, S. and Paul, H.H. 2008. Impact of training system on vine performance and fruit composition of traminette. Amer. J. Enol. Vitic., 59(1): 39-46.

Carbonneau, A. and Casteran, P. 1987. Interactions ‘training system x soil x rootstock’ with regard to vine ecophysiology, vigor, yield and red wine quality in the Bordeaux area. Acta Hort., 206: 119-140. doi: 10.17660/ActaHortic.1987.206.7.

Chowaniak, M.; Rashidov, N.; Niemiec, M.; Gambuś, F. and Lepiarczyk, A. 2020. The Impact of Training Systems on Productivity and GHG Emissions from Grapevines in the Sughd Region in Northern Tajikistan. Agronomy, 10: 818. https://doi.org/10.3390/agronomy10060818

Coletta, A.; Toci, A.T.; Pati, S.; Ferrara, G.; Grieco, F.; Tufariello, M. and Crupi, P. 2021. Effect of Soil Management and Training System on Negroamaro Wine Aroma. Foods, 10: 454. https://doi.org/10.3390/ foods10020454

Cuarto, P.M. and Magsino, R.F. 2017. Develpoment of Young Coconut (Cocos nucifera) Wine. Asia Pacific Journal of Multidisciplinary Research, 5(2): 89-93.

Falcao, L.D.; Chaves, E.S.; Burin, V.; Falcao, A.P.; Gris, E.F.; Bonin, V.; Bordignon-Luiz, M.T. 2008. Maturity of Cabernet Sauvignon berries from grapevines grown with two different training systems in a new grape growing region in Brazil. Cien. e Inv. Agr., 35: 321-332.

Favero, A.C.; Amorim, D.A.de; Mota, R.V.da; Souza, C.R.de; Regina, M. de A. 2010. Physiological responses and production of 'Syrah' vines as a function of training systems. Sci. Agric. (Piracicaba, Braz.), 67(3): 267-273.

Fereres, E. and Soriano, M.A. 2007. Deficit irrigation for reducing agricultural water use. Journal of Experimental Botany, 58: 147-159.

Ferree, D.; Steiner, T.; Gallander, J.; Scurlock, D.; Johns, G. and Riesen, R. 2002. Performance of 'seyval blanc' grape in four training systems over five years. Hoer Science, 37: 1023-1027.

Ghule, V.S.; Ranpise, S.A.; Somkuwar, R.G.; Kulkarni, S.S.; Wagh, R.S.; Naik, R.M. and Nimbalkar, C.A. 2021. Effect of rootstocks on growth parameters of red globe grapevines (Vitis vinifera L.). Int. J of Chem. Studies, 9(1): 3483-87.

Gladstone, E. and Dokoozlian, N.K. 2003. Influence of leaf area density and trellis/training system on the light microclimate within grapevine canopies. Vitis, 42: 123-132.

Gu, S.; Cochran, R.C.; Du, G.; Hakim, A.; Fugelsang, K.C.; Ledbetter, J.; Chuck, A. and Verdegaal, P.S. 2005. Effect of training-pruning regimes on Eutypa dieback and performance of ‘Cabernet Sauvignon’ grapevines. J. Hortic. Sci. Biotechnol., 80(3): 313-318. doi: 10.1080/ 14620316.2005.11511936.

Guerrero, R.F.; Cantos-Villar, E.; Ruiz-Moreno, M.J.; Puertas, B.; Cuevas, F.J. and Moreno-Rojas, J.M. 2019. Influence of vertical training systems on warm climate red winemaking: Wine parameters, polyphenols, volatile composition, and sensory analysis. OENO One, 3: 471-486.

Hedge, J.E. and Hofreiter, B.T. 1962. In: Carbohydrate Chemistry 17 (Eds Whistler R L and Be Miller J N) Academic Press New York.

Jackson, D.I. and Lombard P.B. 1993. Environmental and management-practices affecting grape composition and wine quality - a review. American Journal of Enology and Viticulture, 44(4): 409-430.

Kurtural, S.K.; Beebe, A.E.; Martınez-Luscher, J.; Zhuang, S.; Lund, K.T.; McGourty, G. and Bettiga, L.J. 2019. Conversion to mechanical pruning in vineyards maintains fruit composition while reducing labor costs in ‘Merlot’ grape production. HortTechnology, 29(2): 128-139.

Kyraleou, M.; Kallithraka, S.; Koundouras, S.; Chira, K.; Haroutounian, S.; Spinthiropoulou, H. and Kotseridis, Y. 2015. Effect of vine training system on the phenolic composition of red grapes (Vitis vinifera L. Cv. Xinomavro). J. Int. Sci. Vigne Vin, 49: 71-84.

Leao, P.C. de S. and Chaves A.R. de M. 2019. Training systems and rootstocks on yield and agronomic performance of ‘Syrah’ grapevine in the Brazilian semiarid. Ciência e Agrotecnologia, 43:e005719. http://dx.doi.org/10.1590/1413-7054201943005719

Liu, M.Y.; Chi, M.; Tang, Y.H.; Song, C.Z.; Xi, Z.M. and Zhang, Z.W. 2015. Effect of Three Training Systems on Grapes in a Wet Region of China: Yield, Incidence of Disease and Anthocyanin Compositions of Vitis vinifera cv. Cabernet Sauvignon. Molecules, 20(10): 18967-18987. 10.3390/molecules201018967

Liu, Y.; Yan, J.; Li, Q.; Wang, J. and Shi, Y. 2017. Effect of Training Systems on Accumulation of Flavan-3-ols in Cabernet Sauvignon Grape Seeds at the North Foot of Mt. Tianshan. S. Afr. J. Enol. Vitic., 39(1): 35-46.

Lopes, C.M.; Monteiro, A.; Ruckert, F.E.; Gruber, B.; Steinberg, B. and Schultz, H.R. 2004. Transpiration of grapevines and co-habitating cover crop and weed species in a vineyard. A “snapshot” at diurnal trends. Vitis, 43: 111-117.

Marcon Filho, J.L.; Hipolito, J.S.; Macedo, T.A.; KretzschmaR, A.A.and Rufato, L. 2015. Raleio de cachos sobre o potencial enológico da uva 'Cabernet Franc' em duas safras. Cien. Rur., 45: 2150-2156.

Marcon, J.L.; Wurz, D.A.; Brighenti, A.F.; Allebrandt, R.; Bem, B.P. and Rufato, L. 2020. Agronomic Performance Of ‘Sauvignon Blanc’ Variety Trained In Y-Trellis And Vertical Shoot Position Trellis In A High Altitude Region Of Southern Brazil. Ciência Téc. Vitiv., 35(2): 167-175.

Martınez-Luscher, J.; Brillante, L.; Nelson, C.; Al-Kereamy, A.; Zhuang, G. and Kurtural, S.K. 2017a. Precipitation before bud break and irrigation affect the response of grapevine ‘Zinfandel’ yields and berry skin phenolic composition to training systems. Scientia Hort., 222: 153-161.

Norberto, P.M.; Regina, M. de A.; Chalfun, N.N.J. and Soares, A.M. 2009. Effect of the conduction system in some ecophysiological features of vine (Vitis labrusca L.). Ciência e Agrotecnologia, 33(3): 721-726.

Palliotti, A. 2012. A new closing Y-shaped training system for grapevines. Austr. J. of Grape and Wine Res., 18: 57-63.

Parker, A.; Hofmann, R.; Van Leeuwen, C.; McLachlan, A. and Trought, M. 2015. Manipulating the leaf area to fruit mass ratio alters the synchrony of total soluble solids accumulation and titratable acidity of grape berries. Aust. J. Grape Wine Res., 21: 266-276.

Pedro Junior, M.J.; Hernandes, J.L.; Blain, G.C. and BardinCamrarott, L. 2015. Produtividade e qualidade da 'Cabernet Sauvignon' sustentada em espaldeira e manjedoura na forma de y. Rev. Bras. de Frut., 37: 806-810.

Perez-Lamela, C.; García-Falcon, M.S.; Simal-Gandara, J. and Orriols-Fernandez, I. 2007. Influence of grape variety, vine system and enological treatments on the colour stability of young red wines. Food Chemistry, 101(2): 601-606. doi:10.1016/j.foodchem.2006. 02.020

Peterlunger, E.; Celotti, E.; Da Dalt, G.; Stefanelli, S.; Gollino, G. and Zironi, R. 2002. Effect of training system on pinot noir grape and wine composition. American Journal of Enology and Viticulture, 53(1): 14-18.

Reynolds, A.G. and Vanden Heuvel, J.E. 2009. Influence of grapevine training systems on vine growth and fruit composition: A review. Am. J. Enol. Vitic., 60: 251-268.

Reynolds, A.G.; Wardle, D.A.; Cliff, M.A. and King, M. 2004. Impact of training system and vine spacing on vine performance, berry composition and wine sensory attributes of Riesling. Am. J. Enol. Vitic., 55: 96-103.

Sabbatini, P.; Wierba, K.; Clearwater, L. and Howell, G.S. 2015. Impact of training system and pruning severity on yield, fruit composition, and vegetative growth of ‘Niagara’ grapevines in Michigan. International Journal of Fruit Science, 15: 237-250.

Sanchez-Rodriguez, L.A.; Dias, C.T. dos and Spositoe M.B. 2016. Physiology and production of Niagara Rosada grapevine in vertical shoot positioning and Y-shaped training system. Pesquisa Agropecuária Brasileira, 51(12): 1948-1956.

Sharma, J. and Upadhyay, A.K. 2005. Effect of moisture stress on performance of own rooted and grafted vines of Tas-A-Ganesh (Vitis vinifera L.) VII international symposium on temperate zone fruits in the tropics and subtropics. ISHS Acta. Hort. 662.

Singleton, V.L. and Rossi, J.A. 1965. Colorimetry of total phenolics with phosphomolybdic-phospho tungstic acid reagent. Americ. J. Enol. Vitic., 16: 144-158.

Smart, R.E. 1985. Principles of grapevine canopy microclimate manipulation with implications for yield and quality -A review. Am. J. Enol. Vitic., 35: 230-239.

Somkuwar, R.G.; Bhor, V.A.; Ghule, V.S.; Hakale, D.; Shabeer, A. and Sharma, A.K. 2021. Rootstock affects stress relieving enzymatic activity during bud break in ‘Red Globe’ grapevine under semi-arid condition. Vitis, 60: 93-99.

Somkuwar, R.G.; Ramteke, S.D.; Sawant, S.D. and Takawale, P. 2019. Canopy Modification Influences Growth, Yield, Quality, and Powdery Mildew Incidence in Tas-A-Ganesh Grapevine. International Journal of Fruit Science, 19(4): 437-451, DOI: 10.1080/15538362.2018.1555509

Somkuwar, R.G.; Ramteke, S.D.; Satisha, J.; Bhange, M.; and Itroutwar, P. 2014. Effect of canopy management practices during forward pruning on berry development and photosynthesis in Tas-A-Ganesh grapes. J. Hort. Sci., 9(1): 18-22.

Souza, C.R.; Maroco, J.P.; Santos, T.P.; Rodrigues, M.L.; Lopes, C.M.; Pereira, J.S. and Chaves, M.M. 2005b. Control of stomatal aperture and carbon uptake by deficit irrigation in two grapevines cultivars. Agriculture, Ecosystems and Environment, 106: 261-274.

Toci, A.T.; Crupi, P.; Gambacorta, G.; Dipalmo, T.; Antonacci, D. and Coletta, A. 2012. Free and bound aroma compounds characterization by GC-MS of Negroamaro wine as affected by soil management. J. Mass Spectrom, 47: 1104-1112.

Vilanova, M.; Genisheva, Z.; Tubio, M.; Álvarez, K.; Lissarrague, J.R. and Oliveira, J.M. 2017. Effect of Vertical Shoot-Positioned, Scott-Henry, Geneva Double-Curtain, Arch-Cane, and Parral Training Systems on the Volatile Composition of Albariño Wines. Molecules, 22: 1500. doi:10.3390/molecules22091500

Xu, X.Q.; Cheng, G.; Duan, L.L.; Jiang, R.; Pan, Q.H.; Duan, C.Q. and Wang, J. 2015. Effect of training systems on fatty acids and their derived volatiles in Cabernet-Sauvignon grapes and wines of the north foot of Mt. Tianshan. Food Chem., 181: 198-206.

Zalamena, J.; Cassol, P.C.; Brunetto, G.; Grohskpf, M.A. and Mafra, M.S. 2013. Estado nutricional, vigor e produção em videiras cultivadas com plantas de cobertura. Rev. Bras. de Frut., 35: 1190-1200.

Published

2025-01-27

How to Cite

AUSARI, P. (2025). Evaluation of training systems for growth, yield, photosynthetic activities and wine quality in Cabernet Sauvignon. Journal of Eco-Friendly Agriculture, 20(1). https://doi.org/10.48165/