Tolerant native isolates of Beauveria bassiana with commonly used pesticides in Kerala
DOI:
https://doi.org/10.48165/jefa.2024.19.01.15Keywords:
Beauveria bassiana, biopesticide, compatibility, insecticides, fungicides, scoringAbstract
Compatibility of three native isolates of Beauveria bassiana [OP271760 (BTL1), OP290199 (BTL2) and OP292066 (PKDE)] with five commonly used insecticides (imidacloprid, chlorantranilprole, cypermethrin, thiamethoxam and spinosad) and three fungicides (carbendazim, copper oxychloride and hexaconazole) were tested to identify and incorporate the compatible strain(s) in IPM. The B. bassiana isolate PKDE was compatible with most insecticides commonly used in Kerala except quinalphos. There was more than 80 per cent growth when checking compatibility with chlorantraniliprole, imidacloprid, thiamethoxam and spinosad. The isolates, BTL1 and BTL2 showed slight compatibility with insecticides viz., chlorantraniliprole, imidacloprid, thiamethoxam and cypermethrin with 20-40 per cent growth. Spinosad was 90 to 100 per cent compatible with all three isolates of B. bassiana in the present study. Among fungicides, hexaconazole and carbendazim completely inhibited the growth of all three isolates, whereas copper oxychloride showed 89 per cent compatibility with the isolate PKDE.
Downloads
References
Anderson, T. E. and Roberts, D.W. 1983. Compatibility of Beauveria bassiana isolates with insecticide formulations used in Colorado potato beetle (Coleoptera: Chrysomelidae) control. Journal of Economic Entomology, 76: 1437-1441.
Anderson, T. E., Hajek, A. E., Roberts, D. W., Preisler, H. K. and Robertson, J. L. 1989. Colorado potato beetle (Coleoptera: Chrysomelidae): effects of combinations of Beauveria bassiana with insecticides. Journal of Economic Entomology, 82: 83-89.
Balabanidou, V., Grigoraki, L. and Vontas, J. 2018. Insect cuticle: a critical determinant of insecticide resistance. Current Opinon in Insect Science, 27: 68–74.
Beevi, N.S. and Jacob, A. 1987. Effect of pesticides on the growth and sporulation of Fusarium pallidoroseum var. subglutinans infection Epilachan beetle Henosepilachna vigintiooctopunctata (Fabr.) on bitter gourd. In: National Symposium on Integrated Pest Control–Progress and Perspectives, 267-269.
Ghini, R. and Kimati, H. 2000. Resistência de fungos a fungicidas. Jaguariúna, EMBRAPA Meio Ambiente, 78.
Gosselin, M. E., Belair, G., Simard, L. and Brodeur, J. 2009. Toxicity of spinosad and Beauveria bassiana to the black cutworm, and the additivity of subletal doses. Biocontrol Science and Technology, 19: 201-217.
Hassan S. A. 1989. Testing methodology and the concept of the IOBC/WPRS working group. In: Pesticides and Non-Target Invertebrates (P.C.Jepson, ed.), Intercept, Wimborne, Dorset. pp.1-8.
Hiremath, R., Ghante, V.N., Hosamani, A., Shivaleela and Amaresh, Y.S. 2020. Compatibility of entomopathogenic fungus Beauveria bessiana (Bals.) with selected chemical insecticides. Journal of Entonology and Zoology Studies, 8: 1542- 1548.
Johnson, J. M., Deepthy, K. B. and Chellappan, M. 2020. Tolerance of Metarhizium anisopliae Sorokin isolates to selected insecticides and fungicides. Entomon, 45: 143-148.
T. Nimisha, K.B. Deepthy, Haseena Bhaskar, Mani Chellappan, Reshmy Vijayaraghavan and T.V. Aravindakshan Joshi, M., Gaur, N. and Pandey, R. 2018. Compatibility of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae with selective pesticides. Journal of Entomology and Zoological Studies, 6: 867-872.
Loureiro, E. S, de A., Moino J. R., Arnosti, A., de Souza, G. C. 2002. Efeito de produtos fitossanitários químicos utilizados em alface e crisántemo sobre fungos entomopatogénicos. Neotrop Entomology, 31: 263-269.
Mohsin, A. K., Hamad, B. and Hanawi, M. J. 2020. Interaction of thiamethoxam, spinosad and Beauveria bassiana isolates for control whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) on cucumber. Plant Archives, 20: 929-938.
Moorhouse, E. R., Gillespie, A. T., Sellers, E.K. and Charnley, A.K. 1992. Influence of fungicides and insecticides on the entomogenous fungus Metarhizium anisopliae, a pathogen of the vine weevil, Otiorhynchus sulcatus. Biocontrol Science and Technology, 2: 49-58.
Muthabathula, P. and Biruduganti, S. 2022. Analysis of biodegradation of the synthetic pyrethroid cypermethrin by Beauveria bassiana. Current Microbiology, 79: 46.
Oliveira, C. N. D., Neves, P. M. O. J. and Kawazoe, L. S. 2003. Compatibility between the entomopathogenic fungus Beauveria bassiana and insecticides used in coffee plantations. Scientia Agricola, 60: 663-667.
Oliveira, R.C.D. and Neves, P.M. 2004. Compatibility of Beauveria bassiana with acaricides. Neotropical Entomology, 33: 353-358.
Rajanikanth, P., Subbarathanam, G. V. and Rahaman, S. J. 2010. Compatibility of insecticides with Beauveria bassiana (Balsamo) Vuillemin for use against Spodoptera litura Fabricius, Journal Biological Control, 24: 238- 243.
Sain, S.K., Monga, D., Kumar, R., Nagrale, D.T., Hiremani, N.S. and Kranthi, S. 2019. Compatibility of entomopathogenic fungi with insecticides and their efficacy for IPM of Bemisia tabaci in cotton. Journal of Pesticide Science, 44: 97-105.
Strycharz, J. P., Lao, A., Li, H., Qiu, X., Lee, S. H. and Sun, W. 2013. Resistance in the highly DDT-resistant 91-R strain of Drosophila melanogaster involves decreased penetration, increased metabolism, and direct excretion. Pesticide Biochemistry and Physiology, 107: 207-217.
Vincent, J. M. 1927. Distortion of fungal hyphae in the presence of certain inhibitors. Nature, 59: 850.
Zhang, X.C., Jiang, M., Zang, Y.N., Zhao, H.Z., Liu, C.X., Liu, B.R., Xue, H., Schal, C., Lu, X.M., Zhao, D.Q. and Zhang, X.X. 2022. Metarhizium anisopliae is a valuable grist for biocontrol in beta cypermethrin resistant Blattella germanica (L.). Pest Management Science, 78: 1508-1518.
Zhao, J. Z., Collins, H. L., Li, Y. X., Mau, R. F. L., Thompson, G. D., Hertlein, M., Andaloro, J. T., Boykin, R. and Shelton, A. M. 2006. Monitoring of diamondback moth (Lepidoptera: Plutellidae) resistance to spinosad, indoxacarb, and emamectin benzoate. Journal of Economic Entomology, 99: 176- 181.