Screening of tomato for drought tolerance using physio-Biochemical characters and their molecular analysis using SSR primers

Authors

  • Aniruddh Yadav Department of Agriculture Biotechnology, College of Agriculture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut (Uttar Pradesh), India
  • Vaishali Department of Agriculture Biotechnology, College of Agriculture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut (Uttar Pradesh), India
  • Naresh Pratap Singh College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut (Uttar Pradesh), India
  • Swapnil Srivastava Department of Agriculture Biotechnology, College of Agriculture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut (Uttar Pradesh), India
  • Swati Department of Agriculture Biotechnology, College of Agriculture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut (Uttar Pradesh), India
  • Sonam Arya Shobhit University, Meerut

DOI:

https://doi.org/10.48165/jefa.2024.19.02.20

Keywords:

Drought stress, physiochemical, biochemical, molecular, SSRs

Abstract

 

The study aimed at to study the physio-biochemical analysis of seven tomato genotypes grown under drought stress, genetic diversity, using SSRs. physio-biochemical analysis for the traits i.e., chlorophyll content, TSS content, proline content, catalase activity revealed that the genotype Arka Rakshak with higher total phenolics content have better overall performance under stress compared to other genotypes and seems to be drought tolerant. Diversity studies of seven tomato genotypes amplified with 10SSR primers 8 exhibited polymorphism, the primer SSR110 showed the highest number of polymorphic alleles and the highest PIC value in SSR-92, TS-2, and TS-5 i.e., 0.32 and 0.31, respectively. SSRs was found to be most efficient in assessing the genetic diversity and in crop improvement programs of tomato genotypes. The results obtained in the study will be of great use in crop improvement programs. 

Downloads

Download data is not yet available.

References

A. Mhamdi, G. Noctor, A. Baker, Plant catalases: Peroxisomal redox guardians, Arch. Biochem. Biophys. 525 (2012) 181–194.

Aghaie, P., Tafreshi, S. A. H., Ebrahimi, M. A. and Haerinasab, M. (2018). Tolerance evaluation and clustering of fourteen tomato cultivars grown under mild and severe drought conditions. Scientia Horticulturae, 232, 1-12.

Aliche, E. B., Oortwijn, M., Theeuwen, T. P., Bachem, C. W., Visser, R. G. and Linden, C. G. (2018). Drought response in field grown potatoes and the interactions between canopy growth and yield. Agricultural Water Management, 206, 20-30.

Ayaz, A., Huang, H., Zheng, M., Zaman, W., Li, D., Saqib, S., ... & Lü, S. (2021). Molecular cloning and functional analysis of GmLACS2-3 reveals its involvement in cutin and suberin biosynthesis along with abiotic stress tolerance. International Journal of Molecular Sciences, 22(17), 9175.

Banu, M N., Hoque, M A., Watanabe-Sugimoto, M., Matsuoka, K., Nakamura, Y., Begum, M. K., Islam, M. O., Miah, M. A. S., Hossain, M. A. & Islam, N. Production of Somaclone In vitro for Drought Stress Tolerant Plantlet Selection in Sugarcane (Saccharum officinarum L.). Agriculturists. 2011; 9(1&2):18–28.

Bates, L. S., Waldren, R. P. and Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and soil, 39(1), 205-207.

Bhowmik, D., Sampath Kumar, K.P., Paswan, S. and Srivastava, S. (2012). Tomato-A Natural Medicine and its Health Benefits. Journal of Pharmacognosy Phytochemistry, 872(2). 2278-4136.

Brandsteterova, E. and Ziakova-Caniova, A. (2002). Phenolic acids in natural plants: analysis by HPLC. Encyclopedia of Chromatography 2004 Update Supplement, 322.

Bray, H. G. and Thorpe, W. (1954). Analysis of phenolic compounds of interest in metabolism. Methods of biochemical analysis, 27-52.

Britton, G. TLC of carotenoids. In: Waksmundzka- Hajnos, M., Sherma, J. & Kowalska, T. Eds. Thin Layer Chromatography in Phytochemistry.CRC Press, New York. 2008; 543-73.

Conti, V., Parrotta, L., Romi, M., Del Duca, S., & Cai, G. (2023). Tomato Biodiversity and Drought Tolerance: A Multilevel Review. International Journal of Molecular Sciences, 24(12), 10044.

Cui, Y., Ouyang, S., Zhao, Y., Tie, L., Shao, C., & Duan, H. (2022). Plant responses to high temperature and drought: A bibliometrics analysis. Frontiers in Plant Science, 13, 1052660.

Dahal, K., Li, X. Q., Tai, H., Creelman, A. and Bizimungu, B. (2019). Improving potato stress tolerance and tuber yield under a climate change scenario–a current overview. Frontiers in plant science, 10, 563.

Deshwal, R.P.S., Singh, R., Malik, K. and Randhava, G.L. (2005). Assessment of genetic diversity and genetic relationships among 29 populations of Azadirachta indica using RAPD markers. Genetic Resources and Crop Evolution, 52: 285-292.

Doyle, J. J. and J. L. Doyle. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue.” Phytochemical Bulletin 19: 11-15.

Edward, R. and Kessman, H. (1982). Isoflavonoid phtoalexins and their Biosynthetic enzymes: In phytoalexins (Eds, J.A. Bailey and J. W. Mansefield). Blackie and Son Ltd., Glasgow and London, pp-334.

El-Mansy, A. B., Abd El-Moneim, D., ALshamrani, S. M., Safhi, F. A., Abdein, M. A., & Ibrahim, A. A. (2021). Genetic diversity analysis of tomato (Solanum lycopersicum L.) with morphological, cytological, and molecular markers under heat stress. Horticulturae, 7(4), 65.

Garg, K., Green, P., & Nickerson, D. A. (1999). Identification of candidate coding region single nucleotide polymorphisms in 165 human genes using assembled expressed sequence tags. Genome Research, 9(11), 1087-1092.

Ghorbanli, M., Gafarabad, M., Amirkian, T. A. N. N. A. Z., & ALLAHVERDI, M. B. (2013). Investigation of proline, total protein, chlorophyll, ascorbate and dehydroascorbate changes under drought stress in Akria and Mobil tomato cultivars.

Glogovac S, Takac A. and Gvozdanovic-Varga J (2010). Tomato (L. esculentum Mill.) genotypes variability of fruit traits. Genetika 42(3): 397-406.

Goswami, M. and Anand Ranade, S. (1999). Analysis of variations in RAPD profiles among accessions of Prosopis. Journal of Genetics, 78(3), 141-147.

Hakkinen, S. T., Tilleman, S., Swiątek, A., De Sutter, V., Rischer, H., Vanhoutte, I. and Goossens, A. (2000). Functional characterisation of genes involved in pyridine alkaloid biosynthesis in tobacco. Phytochemistry, 68(22-24), 2773- 2785.

Hassanzadeh, M., Ebadi, A., Panahyan-e-Kivi, M., Eshghi, A.G., Jamaati-e- somarin, S. H., Saeidi, M. and Zabihie-Mahmoodabad, R. (2009). Evaluation of drought stress on Relative water content and chlorophyll content of Sesame (Sesamum indicum L.) genotypes at early flowering stage. Res. J. Environ. Sci. 3 (3): 345-360.

Hossain, M. M. (2003). Effect of different soil moisture levels on growth and yield attributes in winter mung bean. M.S. Thesis. Dept. Crop Bot., Bangladesh Agric. Univ., Mymensingh, Bangladesh.

Hu, X., Wang, H., Chen, J. and Yang, W. (2012). Genetic diversity of Argentina tomato varieties revealed by morphological traits, simple sequence repeat, and single nucleotide polymorphism markers. Pak. J. Bot, 44(2), 485-492.

Kaur, G and Asthir, B. (2017). Molecular responses to drought stress in plants. Biologia Plantarum, 61(2), 201-209.

Khan, R.T., Gerdezi, S.D.A., Abba, S, S.R. and Batool, A. (2016). Effect of drought on the growth of tomatoes genotypes . Int. J. Biosci. 9(1): 421-429.

Kimura, S and Sinha, N. (2008). Tomato (Solanum lycopersicum): a model fruit- bearing crop. Cold Spring Harbor Protocols, 2008(11), pdb-emo105.

Klunklin, W and Savage, G. (2017). Effect on quality characteristics of tomatoes grown under well-watered and drought stress conditions. Foods, 6(8), 56.

Lahlou, O., Ouattar, S. and Ledent, J. F. (2003). The effect of drought and cultivar on growth parameters, yield and yield components of potato. Agronomie, 23(3), 257-268.

Liu, Q., Xu, J., Liu, Y., Zhao, X., Deng, X., Guo, L., & Gu, J. (2007). A novel bud mutation that confers abnormal patterns of lycopene accumulation in sweet orange fruit (Citrus sinensis L. Osbeck). Journal of Experimental Botany, 58(15-16), 4161-4171.

Lum, M. S., Hanafi, M. M., Rafii, Y. M., & Akmar, A. S. N. (2014). Effect of drought stress on growth, proline and antioxidant enzyme activities of upland rice. JAPS: Journal of Animal & Plant Sciences, 24(5).

Mafakheri, A., Siosemardeh, A. F., Bahramnejad, B., Struik, P. C., & Sohrabi, Y. (2010). Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian journal of crop science, 4(8), 580-585.

Maksimovic, C., Prodanović, D., Djordjevic, S., Ivetic, M. and Savic, D. (2005). Biochemical factors contributing to tomato fruit sugar content: a review. Fruits, 67(1), 49-64.

Maryam, A., Anwar, R., Malik, A. U. and Khan, S. A. (2021). Influence of macro‐perforated polyethylene terephthalate and low‐density polyethylene packaging films on quality and storability of strawberries. Journal of Food Processing and Preservation, 45(2), e15068.

Mathur, S., Agrawal, D., & Jajoo, A. (2014). Photosynthesis: response to high temperature stress. Journal of Photochemistry and Photobiology B: Biology, 137, 116-126.

Monje, A. and Bugbee, B. (1992). Inherent limitations of nondestructive chlorophyll meters: a comparison of two types of meters. HortScience, 27: 69-7.

NHB [National Horticulture Board] (2020) Indian Horticulture Database. National Horticulture Board, Gurgaon.

Ogunkanmi, L., MacCarthy, D. S., & Adiku, S. G. (2021). Impact of extreme temperature and soil water stress on the growth and yield of soybean (Glycine max (L.) Merrill). Agriculture, 12(1), 43.

Parrotta, L., Mareri, L., & Cai, G. (2023). Environmental Stress and Plants 2.0. International Journal of Molecular Sciences, 24(15), 12413.

Peng, S., Garcia, F. V., Laza, R. C. and Cassman, K. G. (1993). Adjustment for specific leaf weight improves chlorophyll meter's estimate of rice leaf nitrogen concentration. Agronomy Journal, 85: 987- 990.

Rahman, U.K.; Yaqub, M.; Sheikh, M.A. and Arshad, M. (1998). Extraction and Evolution of peroxidase from various vegetable sources. International Journal of Agriculture and Biology. Pp: 1560- 8530.

Rai, G. K., Jamwal, D., Singh, S., Parveen, A., Kumar, R. R., Singh, M and Salgotra, R. K. (2011). Assessment of genetic variation in tomato (Solanum lycopersicum L.) based on quality traits and molecular markers. SABRAO Journal of Breeding & Genetics, 48(1).

Rai, G. K., Kumar, R., Singh, J., Rai, P. K and Rai, S. K. (2012). Peroxidase, polyphenol oxidase activity, protein profile and Phenolic content in tomato cultivars tolerant and susceptible to Fusarium oxsyporum f. sp. lycopersici. Pak. J. Bot, 43(6), 2987-2990.

Rao, S. & Jabeen, F. In vitro selection and characterization of polyethylene glycol (PEG) tolerant callus lines and regeneration of plant lets from the selected callus lines in sugarcane (Saccharum officinarum L.). 2013 Jun; 19(2):261–68.

Rasul, K. S., Grundler, F. M., & Abdul-razzak Tahir, N. (2022). Genetic diversity and population structure assessment of Iraqi tomato accessions using fruit characteristics and molecular markers. Horticulture, Environment, and Biotechnology, 63(4), 523-538.

Roger, T., Pierre-Marie, M., and Igor, V. K. (2001). Phytochemical screening and antibacterial activity of medicinal plants used to treat typhoid fever in Bamboutos division, West Cameroon. Journal of Applied Pharmaceutical Science, 5(6), 034-049.

Singh, S. (2013). Water logging and its effect on cropping pattern and crop productivity in South-West Punjab: a case study of Muktsar district. Journal of Economic & Social Development, 9(1), 71-80.

Taub, B. T., and Yates, J. (2003). Assessing the costs, benefits, cost-effectiveness, and cost-benefit of psychological assessment: we should, we can, and here'show. Psychological assessment, 15(4), 478.

Thompson, A. L., Conley, M. M., Herritt, M. T., & Thorp, K. R. (2022). Response of upland cotton (Gossypium hirsutum L.) leaf chlorophyll content to high heat and low-soil water in the Arizona low desert. Photosynthetica, 60(2), 280-292.

Upadhyay, A., Jayadev, K., Manimekalai, R and Parthasarathy, V. A. (2004). Genetic relationship and diversity in Indian coconut accessions based on RAPD markers. Scientia horticulturae, 99(3-4), 353-362.

Published

2024-07-02

How to Cite

Aniruddh Yadav, Vaishali, Singh, N.P., Srivastava, S., Swati, & Arya, S. (2024). Screening of tomato for drought tolerance using physio-Biochemical characters and their molecular analysis using SSR primers. Journal of Eco-Friendly Agriculture, 19(2), 351–358. https://doi.org/10.48165/jefa.2024.19.02.20