A Critical Interpretation on Sickle Cell Anaemia: A Genetic Disorder A Brief Review Study
DOI:
https://doi.org/10.48165/Keywords:
Sickle cell anaemia, pathophysiology, Genetics, etcAbstract
HbS is a homozygous type of Sickle Cell Anaemia (HbSS). This is the product of a single point substitution of β-globin chain valine for glutamine 6. This limits the solubility of the red cells, which in turn leads to the polymerization and vaso-occlusion of the vasculature. The gene for β-globin is found in the short arm of chromosome 11. The combination of two β-globin mutant subunits forms haemoglobin S (HbS). Under low oxygen conditions, the absence of polar amino acid at the six-point position of the β-globin chain promotes non covalent hemoglobin polymerization, which distorts the composition of red blood cells in the sickle and decreases their elasticity. Low oxygen tension in sickle cell disease promotes the sickling of red blood cells and frequent episodes of sickling weaken the cell membrane and reduces the elasticity of the cell. When normal oxygen voltage is restored, these cells fail to return to normal form. As a result, these compact blood cells cannot deform as they travel through small capillaries, leading to occlusion of the arteries and Ischemia. The underlying condition anaemia is caused by hemolysis, the breakdown of the red cells within the spleen.
Downloads
References
Platt OS, Brambilla DJ, Rosse WF; Mortality in Sickle Cell Disease. Life Expectancy and Risk Factors for Early Death. N. Engl J Med, 1994; 330 (23): 1639-1644.
Konothy Ahulu FD; Effect of Environment on Sickle Cell Disease in West Africa; Epidemiological and Clinical Considerations, 2004.C.V. Mosby Co, St. Louis.
Desai DV, Hiren D; Sickle Cell Disease. History and Origin. The Internet Journal of Hematology, 2004; 1(2).
Weatherall, D.J. The inherited diseases of hemoglobin are an emerging global health burden. Blood 2010, 115, 4331–4336.
Ansong, D.; Akoto, A.O.; Ocloo, D.; Ohene frempong, K. Sickle Cell Disease: Management Options and Challenges in Developing Countries. Mediterr. J. Hematol. Infect. Dis. 2013, 5, e2013062.
Piel, F.B.; Steinberg, M.H.; Rees, D.C. Sickle Cell Disease. N. Engl. J. Med. 2017, 376,1561– 1573.
Steinberg, M.H. Genetic etiologies for phenotypic diversity in sickle cell anemia. Sci. World J. 2009, 9, 46–67.
Ingram, V.M. Anecdotal, Historical and Critical Commentaries on Genetics Sickle-Cell Anemia Hemoglobin: The Molecular Biology of the First “Molecular Disease”—The Crucial Importance of Serendipity. Genetics 2004, 167, 1–7.
De Montalembert, M. Management of children with sickle cell anemia: A collaborative work. Arch. Pediatr. 2002, 9, 1195–1201.
Gardner, R.V. Sickle Cell Disease: Advances in Treatment. Ochsner J. 2018, 18, 377–389. 11. Manwani, D.; Frenette, P.S. Vaso-occlusion in sickle cell disease: Pathophysiology and novel targeted therapies. Blood 2013, 122, 3892– 3898.
Hebbel, R.P. Ischemia-reperfusion injury in sickle cell anemia: Relationship to acute chest syndrome, endothelial dysfunction, arterial vasculopathy, and inflammatory pain. Hematol. Oncol. Clin. North Am. 2014, 28, 181–198.
Sebastiani, P.; Nolan, V.G.; Baldwin, C.T.; Abad-Grau, M.M.; Wang, L.; Adewoye, A.H.; McMahon, L.C.; Farrer, L.A.; Taylor, J.G.; Kato, G.J.; et al. A network model to predict the risk of death in sickle cell disease. Blood 2007, 110, 2727–2735.
Frenette, P.S.; Atweh, G.F. Sickle cell disease: Old discoveries, new concepts, and future promise J. Clin. Investig. 2007, 117, 850–858.
Piel, F.B.; Steinberg, M.H.; Rees, D.C. Sickle Cell Disease. N. Engl. J. Med. 2017, 376,1561– 1573.
Akinsheye, I.; Alsultan, A.; Solovieff, N.; Ngo, D.; Baldwin, C.T.; Sebastiani, P.; Chui, D.H.; Steinberg, M.H. Fetal hemoglobin in sickle cell anemia. Blood 2011, 118, 19–27.
Bonds, D.R. Three decades of innovation in the management of sickle cell disease: The road to understanding the sickle cell disease clinical phenotype. Blood Rev. 2005, 19, 99–110.
De Montalembert, M. Management of children with sickle cell anemia: A collaborative work. Arch. Pediatr.2002, 9, 1195–1201.
Hofiitchter J, Ross PD, Eaton WA.; Super saturation in Sickle Cell Haemoglobin Solutions. Proc. Natl. Acad. Sci. U.S.A, 1976; 73: 3035.
Green NS, Fabry ME, Kaptus - Noche L, Nagel RL; Senegal Haplotype is Associated with Higher HbF than Benin and Cameron Haplotypes in African Children with Sickle Cell Anaemia Am, J.Haematol, 1993; 44(2): 145 - 145.
Edelstin SJ; Molecular Topology in Crystals and Fibres of Haemoglobin. S.J. MoL Biol; 1981; 150: 557.
Watson, R.J.; Burko, H.; Megas, H.; Robinson, M. The hand-foot syndrome in sickle-cell disease in young children. Pediatrics 1963, 31, 975–982.
Piel, F.B.; Tewari, S.; Brousse, V.; Analitis, A.; Font, A.; Menzel, S.; Chakravorty, S.; Thein,
IRJAY IS OFFICIAL JOURNAL OF BALA G PUBLICATION
S.L.; Inusa, B.; Telfer, P.; et al. Associations between environmental factors and hospital admissions for sickle cell disease. Haematologica 2017, 102, 666–675.
Ballas, S.K.; Kesen, M.R.; Goldberg, M.F.; Lutty, G.A.; Dampier, C.; Osunkwo, I.; Wang, W.C.; Hoppe, C.; Hagar, W.; Darbari, D.S.; et al. Beyond the Definitions of the Phenotypic Complications of Sickle Cell Disease: An Update on Management. Sci. World J. 2012, 2012, 949535.
Brousse, V.; Buffet, P.; Rees, D. The spleen and sickle cell disease: The sick (led) spleen. Br. J. Haematol. 2014,
, 165–176.
Minhas, P.S.; KVirdi, J.; Patel, R. Double whammy-acute splenic sequestration crisis in patient with aplastic crisis due to acute parvovirus infection. J. Commun. Hosp. Int. Med. Perspect. 2017, 7, 194–195.
Inati, A. Recent advances in improving the management of sickle cell disease. Blood Rev. 2009, 23, S9–S13.
Minhas, P.S.; KVirdi, J.; Patel, R. Double whammy-acute splenic sequestration crisis in patient with aplastic crisis due to acute parvovirus infection. J. Commun. Hosp. Int. Med. Perspect. 2017, 7, 194–195.
Rezende, P.V.; Viana, M.B.; Murao, M.; Chaves, A.C.; Ribeiro, A.C. Acute splenic sequestration in a cohort of children with sickle cell anemia. J. Pediatr. (Rio J.) 2009, 85, 163– 169.
Araujo, A.N. Acute splenic sequestration in children with sickle cell anemia. J. Pediatr. (Rio J.) 2009, 85, 373–374.
Mulder, N.; Nembaware, V.; Adekile, A.; Anie, K.A.; Inusa, B.; Brown, B.; Campbell, A.; Chinenere, F.; Chunda-Liyoka, C.; Derebail, V.K.; et al. Proceedings of a Sickle Cell Disease Ontology workshop—Towards the first comprehensive ontology for sickle cell disease. Appl. Transl. Genom. 2016, 9, 23–29.
Hsu, L.L.; Green, N.S.; Ivy, E.D.; Neunert, C.E.; Smaldone, A.; Johnson, S.; Castillo, S.; Castillo, A.; Thompson, T.; Hampton, K.; et al. Community health workers as support forsickle cell care. Am. J. Prev. Med. 2016, 51, S87–S98.
Ohaeri, J.U.; Shokunbi, W.A. Psychosocial burden of sickle cell disease on caregivers in a Nigerian setting.
J. Natl. Med. Assoc. 2002, 94, 1058.
Sickle Cell Society. Standards for the Clinical Care of Adults with Sickle Cell Disease in the UK—2018. Available online: https://www.sicklecellsociety.org/sicklecellstan dards/ (accessed on 10 Fbruary 2019).
Dampier, C.; LeBeau, P.; Rhee, S.; Lieff, S.; Kesler, K.; Ballas, S.; Rogers, Z.; Wang, W.; Comprehensive Sickle Cell Centers (CSCC) Clinical Trial Consortium (CTC) Site Investigators. Health-related quality of life in adults with sickle cell disease (SCD): A report from the comprehensive sickle cell centers clinical trial consortium. Am. J. Hematol. 2011, 86, 203–205.
IRJAY IS OFFICIAL JOURNAL OF BALA G PUBLICATION
Lebensburger, J.D.; Miller, S.T.; Howard, T.H.; Casella, J.F.; Brown, R.C.; Lu, M.; Iyer, R.V.; Sarnaik, S.; Rogers, Z.R.; Wang, W.C.; et al. Influence of severity of anemia on clinical findings in infants with sickle cell anemia: Analyses from the BABY HUG study. Pediatr. Blood Cancer 2012, 59, 675–678.
Vichinsky, E.P. Comprehensive care in sickle cell disease: Its impact on morbidity and mortality.
Semin. Hematol. 1991, 28, 220–226.
Matthews, C.; Walton, E.K.; Inusa, B. Sickle cell disease in childhood. Stud. BMJ 2014, 22. 39. Danaee, A.; Inusa, B.; Howard, J.; Kesse-Adu, R.; Robinson, S. hyperhaemolysis in patients with haemoglobinopathies: A single centre experience: 229. Br. J. Haematol. 2014, 165, 96. 40. Heyman MB, Vischinsky E, Katz R; Growth Retardation in Sickle Cell Disease Treated by Nutritional Support. Lancet, 1985; 1: 903. 41. Sarnaik AS, Lusher J.M; Neurological Complications of Sickle Cell Anaemia, Am. J. Pediatr. HaematoL Oncol, 1982; 4: 386. 42. Wagner G, Johnson R, Claster S; Gynecological and Obstetrical Complications in Sickle Cell Disease. In Sickle Cell Disease: Progress and Prospects. National Sickle Cell Disease Programme. Boston, 1986.
Hayes RJ, Condon PI, Serjeant GR; Haematologic Factors Assocaited with Proliferative Retinopathy in Homozygous Sickle Cell Disease. Br. J. Ophthalmol; 1981; 65: 29.