Evaluation of Biofilm formation capacity of Pasteurella multocida and its relationship with antibiotic resistance

Authors

  • Kavitha Kandimalla Department of Veterinary Microbiology and Biotechnology, College of Veterinary Science, Rajendranagar, Hyderabad, Telangana
  • Basavaraj Awati Department of Veterinary Microbiology, Veterinary College, Bidar, KVAFSU, Bidar, Karnataka.
  • Kalyani Putty Department of Veterinary Microbiology and Biotechnology, College of Veterinary Science, Rajendranagar, Hyderabad, Telangana
  • Vamshi Krishna Sai Ram Department of Veterinary Microbiology and Biotechnology, College of Veterinary Science, Rajendranagar, Hyderabad, Telangana
  • Narsimha Reddy Yella Department of Veterinary Microbiology and Biotechnology, College of Veterinary Science, Rajendranagar, Hyderabad, Telangana
  • Nanagouda A Patil Department of Veterinary Medicine, Veterinary College, Bidar, Karnataka.
  • Ravindra Bhoyar Department of Veterinary Medicine, Veterinary College, Shivamogga, Karnataka.
  • Mallinath Karabasappa Choudapur Department of Veterinary Microbiology, Veterinary College, Bidar, KVAFSU, Bidar, Karnataka.
  • Arun Karate Department of Veterinary Microbiology, Veterinary College, Bidar, KVAFSU, Bidar, Karnataka.
  • Gopala Lunavat Department of Veterinary Microbiology and Biotechnology, College of Veterinary Science, Rajendranagar, Hyderabad, Telangana
  • Jayashri Akkaldevi Department of Veterinary Biochemistry, College of Veterinary Science, Rajendranagar, Hyderabad, Telangana
  • Vishweshwar Ganji Department of Veterinary Microbiology and Biotechnology, College of Veterinary Science, Rajendranagar, Hyderabad, Telangana

DOI:

https://doi.org/10.48165/ijvsbt.18.5.14

Keywords:

Biofilm, Haemorrhagic Septicaemia, Pasteurella multocida, Real-time PCR, tad locus genes

Abstract

Pasteurella multocida is a Gram-negative bacterium that causes haemorrhagic septicaemia in cattle and buffaloes. These organisms are involved in the formation of biofilm and can evade treatment. There is no definitive study to screen the genes associated with biofilm production associated with Pasteurella multocida. The present study describes the real-time PCR based approach for screening of genes associated with biofilm formation. Out of 10 isolates screened for biofilm formation, five of them produced biofilm on Congo red agar of which all are resistant to major antibiotics especially cotrimoxazole, nalidixic acid, enrofloxacin and tetracyclines. All the isolates show presence of genes associated with biofilm formation indicating that other factors influencing the biofilm production. We suggest that the future studies may be targeted to unravel the other factors that influence the biofilm production.

Downloads

Download data is not yet available.

References

Agarwal, R.K., Singh, S., Bhilegaonkar, K.N. & Singh, V.P. (2011). Optimization of microtitre plate assay for the testing of biofilm formation ability in different Salmonella serotypes. The International Food Research Journal, 18(4), 1493-1498.

Annual report (2020-21). Department of Animal Husbandry and Dairying, Government of India, pp:159.

Ashby, M.J., Neale, J.E., Knott, S.J & Critchley, I.A. (1994). Effect of antibiotics on non-growing planktonic cells and biofilms of Escherichia coli. Journal of Antimicrobial Chemotherapy, 33(3), 443– 452.

Bauer, A.W., Kirby, W.M., Sherris, J.C. & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. Journal of Clinical Pathology, 45, 493-96.

Beloin, C. & Ghigo, J.M. (2005). Finding gene-expression patterns in bacterial biofilms. Trends in Microbiology, 13(1), 16-19.

Chakraborty, S., Dutta, T.K., A. De, M. Das & S. Ghosh (2018). Impact of Bacterial Biofilm in Veterinary Medicine: An Overview. International Journal of Current Microbiology and Applied Sciences, 7(4), 3228-3239.

CLSI (2010). Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria. Approved guideline. 2nd ed. CLSI/NCCLS M45- A2. Wayne PA: Clinical and Laboratory Standards Institute.

Emery, B.D., Furian, T.Q., Pilatti, R.M., Chitolina, G.Z., Borges, K.A., Salle, C.T.P. & Moraes, H.L.S. (2017). Evaluation of the biofilm formation capacity of Pasteurella multocida strains isolated from cases of fowl cholera and swine lungs and its relationship with pathogenicity. Pesquisa Veterinária Brasileira, 37(10),1041-1048.

Harper, M., John, D., Boyce, D. J. & Adler, B. (2006) Pasteurella multocida pathogenesis: 125 years after Pasteur. FEMS Microbiology Letters, 265, 1–10.

Jabeen, S., Yap, H.Y., Abdullah, F.F.J., Zakaria, Z., Isa, N.M., Tan, Y.C., Joo, Y.S., Satharasinghe, D.A. & Omar, A.R. (2019). Complete Genome Sequence Analysis and Characterization of Selected Iron Regulation Genes of Pasteurella multocida Serotype A Strain PMTB2.1. Genes, 10, 81; doi:10.3390/genes10020081.

Jyoti Kumar, Sonawane, G.G., Fateh Singh, Jegaveera Pandian, S. & Rajiv Kumar (2020). Evaluation of a SYBR Green Real-Time PCR Assay for Specific Detection of Pasteurella multocida in Culture and Tissue Samples from sheep. Indian Journal of Animal Research, (54)8, 1006-1011. DOI: 10.18805/ijar. B-3774.

Moraes, D.F.dS.D., Brandão, L.N.S., Pitchenin, L.C., Filho, J.X., Mores, N., Nakazato, L. & Dutra V. (2014). Ocorrência de genes tad associados à formação de biofilme em isolados de Pasteurella multocida de pulmões de suínos com pneumonia. Pesquisa veterinária brasileira, 34, 1147-1152.

Olson, M.E., Ceri, H., Morck, D.W., Buret, A.G. & Read, R.R. (2002). Biofilm bacteria: formation and comparative susceptibility to antibiotics. Canadian Journal of Veterinary Research, 66, 86-92.

Petruzzi B, Briggs RE, Swords WE, De Castro C, Molinaro A, & Inzana TJ. (2017). Capsular polysaccharide interferes with biofilm formation by Pasteurella multocida serogroup A. mBio 8(6), e01843-17. https://doi.org/10.1128/ mBio.01843-17

Prajapati, A., Mudassar Chanda, Md., Dhayalan, A., Yogisharadhya, R., Chaudhary, J. K., Nalini Mohanty, N. & Shivachandra, S.B. (2020). Variability in in vitro biofilm production and antimicrobial sensitivity pattern among Pasteurella multocida strains. Biofouling, 36(8), 938-950, DOI: 10.1080/08927014.2020.1833192.

Quinn, P.J., Carter, M.E, Markey, B.K., & Carter, G.R. (1994). Wolfe Publication, London, U.K. pp: 254-258.

Rabin, N., Zheng, Y., Opoku-Temeng, C., Du, Y., Bonsu, E. & Sintim, H.O. (2015). Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Medicinal Chemistry, 7(4), 493- 512.

Rajagopal, R., Krishnan Nair, G., Mini, M., Joseph, L., Saseendranath, M.R. & John, K. (2013). Biofilm formation of Pasteurella multocida on bentonite clay. The Iranian Journal of Microbiology, 5(2), 120–125.

Rashid, M.H., Rumbaugh, K., Passador, L., Davies, D.G., Hamood, A.N., Iglewski, B.H. & Kornberg, A. (2000). Polyphosphate kinase is essential for biofilm development, quorum sensing, and virulence of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America, 97(17), 9636-9641.

Sambrook, J. & Russell, D.W. (2006). The condensed protocols from molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. http://www.loc.gov/catdir/toc/ecip0517/2005022077.html.

Savage, V.J., Chopra, I. & O’Neill, A.J. (2013). Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance. Antimicrobial Agents and Chemotherapy, 57(4), 1968–1970.

Townsend, K.M., Frost, A.J., Lee, C.W., Papadimitriou, J.M. & Dawkins, H.J.S. (1998). Development of PCR assays for species- and type-specific identification of Pasteurella multocida isolates. Journal of Clinical Microbiology, 36, 1096–1100.

Townsend, K.M., Boyce, D.J., Chung, J.Y., Frost, A.J. & Adler B. (2000). Genetic organisation of Pasteurella multocida cap loci and development of a multiplex capsular PCR typing system. Journal of Clinical Microbiology, 39, 924– 929.

Zambori, C., Cumpanasoiu, C., Mladin B., & Tirziu, E. (2013). Biofilms in oral cavity of dogs and implication in zoonotic infections. Scientific Papers Animal Science and Biotechnology, 46(1), 155-158.

Zhang, L. & Mah, T.F. (2008). Involvement of a novel efflux system in biofilm specific resistance to antibiotics. Journal of Bacteriology, 190(13), 4447–4452.

Downloads

Published

2022-11-07

How to Cite

Kandimalla, K., Awati, B., Putty, .K., Ram, V.K.S., Yella, N.R., Patil, N.A., … Ganji, V. (2022). Evaluation of Biofilm formation capacity of Pasteurella multocida and its relationship with antibiotic resistance. Indian Journal of Veterinary Sciences and Biotechnology, 18(5), 68–74. https://doi.org/10.48165/ijvsbt.18.5.14