Isolation and Antimicrobial Resistance Mapping of Escherichia coli Isolates from Various Animal Species and Birds
DOI:
https://doi.org/10.48165/ijvsbt.22.1.12Keywords:
Animals, Antibiotic resistance genes, Antimicrobial resistance, Birds, E. coli, ESBL, IntegronAbstract
In the present study, 257 faecal samples were collected from diarrheic and healthy cattle, buffaloes, dogs, and poultry in and around Anand, Gujarat. Based on cultural and biochemical characterization, 200 isolates (77.82%) were identified as Escherichia coli. Antibiotic susceptibility testing using 22 antimicrobials revealed high resistance to cephalothin (up to 100%), followed by pefloxacin (84%), erythromycin (72%), and cefoperazone (64%), while complete sensitivity was observed toward amoxyclav, colistin, and amikacin. Extended-spectrum β-lactamase (ESBL) production was phenotypically confirmed in 52.00% of isolates from diseased poultry, followed by 44.00% from diarrheic cattle, 40.0% from healthy cattle and diarrheic buffaloes, each and 20.00% from healthy dogs. PCR based screening of 200 isolates for 14 different antibiotic resistance genes (ARGs) detected multiple ARGs, with tetA (47.50%), followed by tetB (41.50%), sulI (39.00%), aadA1 (32.50%) and qnrS (29.50), while β-lactamase genes (blaTEM, blaOXA, blaSHV) and integron gene intl1 were detected in 10.50-27.00% of the isolates. The findings highlight widespread dissemination of multidrug-resistant and ESBL-producing E. coli among livestock and poultry, emphasizing the need for judicious antibiotic use and regular AMR surveillance in animal populations.
Downloads
References
Adebisi, Y. A., & Ogunkola, I. O. (2023). The global antimicrobial resistance response effort must not exclude marginalised populations. Tropical Medical Health, 51, 33.
Barrow, G. I., & Feltham, R. K. A. (2004). Cowan and Steel’s Manual for the Identification of Medical Bacteria (3rd ed.). Cambridge University Press.
Bauer, A. W., Kirby, W. M. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disc method. American Journal of Clinical Pathology, 145, 225–230.
Begum, F., Islam, M. M., Sohidullah, M., Kabir, S. M. L., Islam, M., & Rahman, M. T. (2016). Molecular identification and antibiogram profiles of Escherichia coli isolated from apparently healthy and diarrheic goats. Bangladesh Journal of Veterinary Medicine, 14(2), 203–208.
Bennett, P. M. (1999). Integrons and gene cassettes: A genetic construction kit for bacteria. Journal of Antimicrobial Chemotherapy, 43, 1–4.
Bush, K., & Jacoby, G. A. (2010). Updated functional classification of β-lactamases. Antimicrobial Agents and Chemotherapy, 54(3), 969–976.
Bush, K., Jacoby, G. A., & Medeiros, A. A. (1995). A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrobial Agents and Chemotherapy, 39(6), 1211–1233.
Clinical and Laboratory Standards Institute (CLSI). (2015). Performance standards for antimicrobial susceptibility testing; Twenty-fifth informational supplement (CLSI document M100-S25).
Drieux, L., Brossier, F., Sougakoff, W., & Jarlier, V. (2008). Phenotypic detection of extended-spectrum β-lactamase production in Enterobacteriaceae: Review and bench guide. Clinical Microbiology and Infection, 14(1), 90–103.
El-Mongy, M. A., Abd-El-Moneam, G. M., Amgad, A. M., & Mohammed, A. (2017). Serotyping and virulence genes detection in Escherichia coli isolated from broiler chickens. Journal of Biological Sciences, 18, 46–50.
Goudarzi, S. M., & Eftekhar, F. (2015). Multidrug resistance and integron carriage in clinical isolates of Pseudomonas aeruginosa in Tehran, Iran. Turkish Journal of Medical Sciences, 45(4), 789–793.
Helmuth, R., & Hensel, A. (2004). Towards the rational use of antibiotics; results of the first international symposium on the risk analysis of antibiotic resistance. Journal of Veterinary Medicine, Series B, 51(8–9), 357–360.
Hu, Q., Tu, J., Han, X., Zhu, Y., Ding, C., & Yu, S. (2011). Development of multiplex PCR assay for rapid detection of Riemerella anatipestifer, Escherichia coli, and Salmonella enterica simultaneously from ducks. Journal of Microbiological Methods, 87(1), 64–69.
Laxminarayan, R. (2022). The overlooked pandemic of antimicrobial resistance. The Lancet, 399, 606–607.
Lemlem, M., Aklilu, E., Mohammed, M., Kamaruzzaman, F., Zakaria, Z., Harun, A., & Devan, S. S. (2023). Molecular detection and antimicrobial resistance profiles of extended-spectrum beta-lactamase (ESBL) producing Escherichia coli in broiler chicken farms in Malaysia. PLoS One, 18, e0285743.
Markey, B., Leonard, F., Archambault, M., Cullinane, A., & Maguire, D. (2013). Clinical Veterinary Microbiology (e-book). Elsevier Health Sciences.
Nguyen, T. D., Vo, T. T., & Vu-Khac, H. (2011). Virulence factors in Escherichia coli isolated from calves with diarrhea in Vietnam. Journal of Veterinary Science, 12, 159–164.
Nikolich, M. P., Hong, G., Shoemaker, N. B., & Salyers, A. A. (1994). Evidence for natural horizontal transfer of tet between bacteria that normally colonize humans and bacteria that normally colonize livestock. Applied and Environmental Microbiology, 60(9), 3255–3260.
Robicsek, A., Jacoby, G. A., & Hooper, D. C. (2006). The worldwide emergence of plasmid-mediated quinolone resistance. The Lancet Infectious Diseases, 6(10), 629–640.
Shahrani, M., Dehkordi, F. S., & Hassan, M. (2014). Characterization of Escherichia coli virulence gene, pathotype and antibiotic resistance properties in diarrheic calves in Iran. Biological Research, 47(28), 1–13.
Shehata, M. E., El-Sherbiny, G. M., Mohamed, A. H., & Shafik, H. M. (2016). Molecular and phenotypic characterization of some antimicrobial resistance genes in Escherichia coli isolated from human and broiler chickens. International Journal of Current Microbiology and Applied Sciences, 5(12), 953–965.
Van, T. T. H., Chin, J., Chapman, T., Tran, L. T., & Coloe, P. J. (2008). Safety of raw meat and shellfish in Vietnam: An analysis of Escherichia coli isolations for antibiotic resistance and virulence genes. International Journal of Food Microbiology, 124(3), 217–223.
Wibisono, F. J., Sumiatro, B., Untari, T., Effendi, M. H., Permatasari, D. A., & Witaningrum, A. M. (2021). Molecular identification of ctx gene of extended spectrum beta-lactamases (ESBL) producing Escherichia coli on layer chicken in Blitar, Indonesia. Journal of Animal and Plant Sciences, 31, 954–959.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Indian Journal of Veterinary Sciences and Biotechnology

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

