Impact of Oral Glucosamine-Chondroitin-Methylsulfonylmethane Supplementation on Functional Recovery in Dogs with Diaphyseal Fractures
DOI:
https://doi.org/10.48165/ijvsbt.22.1.11Keywords:
Chondroitin sulphate, Dogs, External skeletal fixation, Fracture healing, Glucosamine, Methylsulfonylmethane (MSM)Abstract
This study evaluated the effect of oral Glucosamine HCl, Chondroitin sulphate, and Methylsulfonylmethane (MSM) on fracture healing in dogs treated with minimally invasive external skeletal fixation (ESF). Twelve dogs with diaphyseal fractures of the radius-ulna or tibia fibula were randomly assigned to two equal groups: Group I served as control, and Group II received oral Flexirun tablets (glucosamine, chondroitin, and MSM) for two months. Lameness and radiographic healing were assessed on the 7th, 15th, 30th, and 60th postoperative days. All dogs showed progressive improvement, but Group II demonstrated faster functional recovery and earlier callus formation, with significant differences in healing scores at day 30. By day 60, both groups achieved near-complete union, with excellent outcomes in most cases. The findings indicate that ESF provides effective fracture stabilization, while adjunctive glucosamine, chondroitin, and MSM accelerate recovery, reduce stiffness, and enhance limb function during the critical early and mid-recovery periods. Nutraceutical supplementation may therefore serve as a valuable adjunct in canine fracture management.
Downloads
References
Ahn, H., Kim, J., Lee, M. J., Kim, Y. J., Cho, Y. W., & Lee, G. S. (2015). Methylsulfonylmethane inhibits NLRP3 inflammasome activation. Cytokine, 71, 223–231.
Aljohani, H., Senbanjo, L. T., & Chellaiah, M. A. (2019). Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells. PLoS One, 14, e0225598.
Alves, J. C., Santos, A. M., & Jorge, P. I. (2017). Effect of an oral joint supplement when compared to carprofen in the management of hip osteoarthritis in working dogs. Topics in Companion Animal Medicine, 32(4), 126–129.
Baeurle, S. A., Kiselev, M. G., Makarova, E. S., & Nogovitsin, E. A. (2009). Effect of the counterion behaviour on the frictional–compressive properties of chondroitin sulfate solutions. Polymer, 50, 1805–1813.
Beale, B. S. (2004). Use of nutraceuticals and chondroprotectants in osteoarthritic dogs and cats. Veterinary Clinics of North America: Small Animal Practice, 34, 271–289.
Cook, J. L., Tomlinson, J. L., & Reed, A. L. (1999). Fluoroscopically guided closed reduction and internal fixation of fractures of the lateral portion of the humeral condyle: Prospective clinical study of the technique and results in ten dogs. Veterinary Surgery, 28(5), 315–321.
Fox, S. M., Bray, J. C., Guerin, S. R., & Burbridge, H. M. (1995). Antebrachial deformities in the dog: Treatment with external fixation. Journal of Small Animal Practice, 36, 315–320.
Gregory, P. J., Sperry, M., & Wilson, A. F. (2008). Dietary supplements for osteoarthritis. American Family Physician, 77, 177–184.
Ha, S. H., & Choung, P. H. (2020). MSM promotes human periodontal ligament stem cells differentiation to osteoblast and bone regeneration. Biochemical and Biophysical Research Communications, 528, 160–168.
Hayashi, A. M., Matera, J. M., Sterman, F. A., Muramoto, C., & Cortopassi, S. R. G. (2008). Evaluation of electroacupuncture in bone healing of radius-ulna fracture in dogs. Brazilian Journal of Veterinary and Animal Science, 45, 339–347.
Jackson, R. A., McDonald, M. M., Nurcombe, V., Little, D. G., & Cool, S. M. (2006). The use of heparan sulfate to augment fracture repair in a rat fracture model. Journal of Orthopaedic Research, 24(4), 636–644.
Jerosch, J. (2011). Effects of glucosamine and chondroitin sulfate on cartilage metabolism in OA: Outlook on other nutrient partners especially omega-3 fatty acids. International Journal of Rheumatology, 2011, 969012.
Joung, Y. H., Lim, E. J., Darvin, P., Chung, S. C., Jang, J. W., Park, K. D., Lee, H. K., Kim, H. S., Park, T., & Yang, Y. M. (2012). MSM enhances GH signaling via the Jak2/STAT5b pathway in osteoblast-like cells and osteoblast differentiation through the activation of STAT5b in MSCs. PLoS One, 7, e47477.
Karacal, N., Koşucu, P., Cobanglu, U., & Kutlu, N. (2005). Effect of human amniotic fluid on bone healing. Journal of Surgical Research, 129, 283–287.
Kim, L. S., Axelrod, L. J., Howard, P., Buratovich, N., & Waters, R. F. (2006). Efficacy of methylsulfonylmethane (MSM) in osteoarthritis pain of the knee: A pilot clinical trial. Osteoarthritis and Cartilage, 14, 286–294.
Kim, Y. H., Kim, D. H., Lim, H., Baek, D. Y., Shin, H. K., & Kim, J. K. (2009). The anti-inflammatory effects of methylsulfonylmethane on lipopolysaccharide-induced inflammatory responses in murine macrophages. Biological and Pharmaceutical Bulletin, 32, 651–656.
Liang, W. H., Kienitz, B. L., Penick, K. J., Welter, J. F., Zawodzinski, T. A., & Baskaran, H. (2010). Concentrated collagen-chondroitin sulfate scaffolds for tissue engineering applications. Journal of Biomedical Materials Research, 94, 1050–1060.
Lubis, A. M. T., Siagian, C., Wonggokusuma, E., Marsetyo, A. F., & Setyohadi, B. (2017). Comparison of glucosamine-chondroitin sulfate with and without methylsulfonylmethane in grade I–II knee osteoarthritis: A double-blind randomized controlled trial. Acta Medica Indonesiana, 49(2), 105–111.
Meganck, J. A., Begun, D. L., McElderry, J. D., Swick, A., Kozloff, K. M., & Goldstein, S. A. (2013). Fracture healing with alendronate treatment in the mouse model of osteogenesis imperfecta. Bone, 56, 204–212.
Song, S. J., Hutmacher, D., Cool, S. M., & Nurcombe, V. (2006). Temporal expression of proteoglycans in the rat limb during bone healing. Gene, 379, 92–100.
Usha, P. R., & Naidu, M. U. (2004). Randomized, double-blind, parallel, placebo-controlled study of oral glucosamine, methylsulfonylmethane and their combination in osteoarthritis. Clinical Drug Investigation, 24, 353–363.
Wibowo, H., Widiyanti, P., & Asmiragani, S. (2021). The role of chondroitin sulfate to bone healing indicators and compressive strength. Journal of Basic and Clinical Physiology and Pharmacology, 32(4), 631–635.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Indian Journal of Veterinary Sciences and Biotechnology

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

