Pentaplex PCR for Rapid and Reliable Detection of Virulence-Associated Genes in Avian Pathogenic Escherichia Coli Isolated from Colibacillosis

Authors

  • Atokali H Yeptho Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh-362001, Gujarat, India
  • Sanjay N Ghodasara Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh-362001, Gujarat, India
  • Vinay A Kalaria Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh-362001, Gujarat, India
  • Bhavesh B Javia Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh-362001, Gujarat, India
  • Dilip B Barad Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh-362001, Gujarat, India

DOI:

https://doi.org/10.48165/ijvsbt.22.1.09

Keywords:

APEC, Colibacillosis, Pentaplex PCR, Poultry, Virulence-associated genes

Abstract

The present study was conducted with the aim to characterize Avian Pathogenic Escherichia coli (APEC) isolates from colibacillosis affected  chickens and to screen for key virulence-associated genes using a pentaplex PCR assay. A total of 100 tissue samples were collected from  chickens diagnosed with colibacillosis during post-mortem examination. Out of these, 77 samples were presumptively identified as E. coli  based on cultural and biochemical characteristics. All 77 isolates provisionally identified as E. coli were subsequently confirmed by PCR  amplification using genus specific primers targeting the 16S rRNA gene. Further screening of the isolates by pentaplex PCR targeting  five APEC-associated virulence genes (iutA, iroN, iss, ompT and hlyF) revealed a high prevalence of these virulence determinants among  the E. coli isolates obtained from diseased poultry. The iss and ompT genes were most frequently detected (97.40%), closely followed  by iroN and hlyF (96.10%) and iutA (88.31%). Among the isolates, 66 (85.71%) carried all five virulence genes, 9 (11.69%) harbored four  genes in various combinations, and only 2 (2.60%) lacked all five genes. These findings substantiate the utility of pentaplex PCR as a  rapid, specific, and reliable molecular assay for early identification and differentiation of APEC, thereby supporting prompt intervention  and effective control of colibacillosis in poultry production systems. 

 

Downloads

Download data is not yet available.

References

Ahmed, A.M., Shimamoto, T., & Shimamoto, T. (2013). Molecular characterization of multidrug-resistant avian pathogenic Escherichia coli isolated from septicemic broilers. International Journal of Medical Microbiology, 303(8), 475–483.

Alam, S.B., Mahmud, M., Akter, R., Hasan, M., Sobur, A., Nazir, K.N.H., & Rahman, M. (2020). Molecular detection of multidrug resistant Salmonella species isolated from broiler farm in Bangladesh. Pathogens, 9(3), 201.

Apostolakos, I., Laconi, A., Mughini-Gras, L., Yapicier, O.S., & Piccirillo, A. (2021). Occurrence of colibacillosis in broilers and its relationship with avian pathogenic Escherichia coli (APEC) population structure and molecular characteristics. Frontiers in Veterinary Science, 8, 737720.

Collee, J.G., Fraser, A.G., Marmion, B.P., & Simmons, D.K. (2008). Practical Medical Microbiology (17th ed., pp. 813–834). Churchill Livingstone, New York, Edinburgh, London.

De Carli, S., Ikuta, N., Lehmann, F.K.M., da Silveira, V.P., de Melo Predebon, G., Fonseca, A.S.K., & Lunge, V.R. (2015). Virulence gene content in Escherichia coli isolates from poultry flocks with clinical signs of colibacillosis in Brazil. Poultry Science, 94(11), 2635–2640.

Dziva, F., & Stevens, M.P. (2008). Colibacillosis in poultry: Unravelling the molecular basis of virulence of avian pathogenic Escherichia coli in their natural hosts. Avian Pathology, 37(4), 355–366.

Englen, M.D., & Kelley, L.C. (2000). A rapid DNA isolation procedure for the identification of Campylobacter jejuni by the polymerase chain reaction. Letters in Applied Microbiology, 31(6), 421–426.

Grakh, K., Mittal, D., Prakash, A., & Jindal, N. (2022). Characterization and antimicrobial susceptibility of biofilm-producing avian pathogenic Escherichia coli from broiler chickens and their environment in India. Veterinary Research Communications, 46(2), 537–548.

Guabiraba, R., & Schouler, C. (2015). Avian colibacillosis: Still many black holes. FEMS Microbiology Letters, 362(15), 118.

Jhandai, P., Mittal, D., Gupta, R., & Kumar, M. (2025). An insight into newly emerging avian pathogenic E. coli serogroups, biofilm formation, ESBLs and integron detection and in vivo pathogenicity in chicken. Microbial Pathogenesis, 2025, 107309.

Johnson, L.C., Bilgili, S.F., Hoerr, F.J., McMurtrey, B.L., & Norton, R.A. (2001). The influence of Escherichia coli strains from different sources and the age of broiler chickens on the development of cellulitis. Avian Pathology, 30(5), 475–478.

Johnson, T.J., Wannemuehler, Y., Doetkott, C., Johnson, S.J., Rosenberger, S.C., & Nolan, L.K. (2008). Identification of minimal predictors of avian pathogenic Escherichia coli virulence for use as a rapid diagnostic tool. Journal of Clinical Microbiology, 46(12), 3987–3996.

Levy, S., Islam, M.S., Sobur, M.A., Talukder, M., Rahman, M.B., Khan, M.F.R., & Rahman, M.T. (2020). Molecular detection of avian pathogenic Escherichia coli (APEC) for the first time in layer farms in Bangladesh and their antibiotic resistance patterns. Microorganisms, 8(7), 1021.

Li, Y., Chen, L., Wu, X., & Huo, S. (2015). Molecular characterization of multidrug-resistant avian pathogenic Escherichia coli isolated from septicemic broilers. Poultry Science, 94(4), 601–611.

Mbanga, J., & Nyararai, Y.O. (2015). Virulence gene profiles of avian pathogenic Escherichia coli isolated from chickens with colibacillosis in Bulawayo, Zimbabwe. Onderstepoort Journal of Veterinary Research, 82(1), 1–8.

Menck-Costa, M.F., Baptista, A.A.S., Sanches, M.S., Santos, B.Q.D., Cicero, C.E., Kitagawa, H.Y., & Kobayashi, R.K.T. (2023). Resistance and virulence surveillance in Escherichia coli isolated from commercial meat samples: A one health approach. Microorganisms, 11(11), 2712.

Murase, K., Martin, P., Porcheron, G., Houle, S., Helloin, E., Pénary, M., & Oswald, E. (2016). HlyF produced by extra-intestinal pathogenic Escherichia coli is a virulence factor that regulates outer membrane vesicle biogenesis. The Journal of Infectious Diseases, 213(5), 856–865.

Panchal, P.P., Patel, J.M., Vihol, P.D., Raval, J.K., Patel, D.R., Danger, N., & Patel, N. (2020). Serotyping and prevalence of Escherichia coli infection in poultry of South Gujarat based on culture isolation and identification. International Journal of Current Microbiology and Applied Sciences, 9(10), 3876–3883.

Parvin, M.S., Talukder, S., Ali, M.Y., Chowdhury, E.H., Rahman, M.T., & Islam, M.T. (2020). Antimicrobial resistance pattern of Escherichia coli isolated from frozen chicken meat in Bangladesh. Pathogens, 9(6), 420.

Pilati, G.V.T., Salles, G.B.C., Savi, B.P., Dahmer, M., Muniz, E.C., Filho, V.B., & Fongaro, G. (2024). Isolation and characterization of Escherichia coli from Brazilian broilers. Microorganisms, 12(7), 1463.

Radwan, I.A., Salam, H.S.H., Abd-Alwanis, A.A., & Al-Sayed, M.Y. (2014). Frequency of some virulence-associated genes among multidrug-resistant Escherichia coli isolated from septicemic broiler chicken. International Journal of Advanced Research, 2(12), 867–874.

Rahman, M.A., Samad, M.A., Rahman, M.B., & Kabir, S.M.L. (2004). Bacterio-pathological studies on salmonellosis, colibacillosis and pasteurellosis in natural and experimental infections in chickens. Bangladesh Journal of Veterinary Medicine, 2(1), 1–8.

Sarowska, J., Futoma-Koloch, B., Jama-Kmiecik, A., Frej-Madrzak, M., Ksiazczyk, M., Bugla-Ploskonska, G., & Choroszy-Krol, I. (2019). Virulence factors, prevalence and potential transmission of extra-intestinal pathogenic Escherichia coli isolated from different sources: Recent reports. Gut Pathogens, 11, 1–16.

Schippa, S., Iebba, V., Barbato, M., Di Nardo, G., Totino, V., Checchi, M.P., & Conte, M.P. (2010). A distinctive microbial signature in celiac pediatric patients. BMC Microbiology, 10, 1–10.

Subedi, M., Luitel, H., Devkota, B., Bhattarai, R.K., Phuyal, S., Panthi, P., & Chaudhary, D.K. (2018). Antibiotic resistance pattern and virulence genes content in avian pathogenic Escherichia coli (APEC) from broiler chickens in Chitwan, Nepal. BMC Veterinary Research, 14, 1–6.

Tawakol, M., & Younis, E. (2019). Evaluation of the relationship between virulence, antibiotic resistance genes and development of biofilm in Escherichia coli isolated from broiler chicken. Assiut Veterinary Medical Journal, 65(161), 116–128.

Tongkamsai, S., & Nakbubpa, K. (2024). Extended-spectrum beta-lactamase (ESBL) production and virulence genes profile of avian pathogenic Escherichia coli (APEC) isolated from broiler chickens in eastern Thailand. Veterinary Integrative Sciences, 22(1), 207–218.

Varga, C., Brash, M.L., Slavic, D., Boerlin, P., Ouckama, R., Weis, A., & Guerin, M.T. (2018). Evaluating virulence-associated genes and antimicrobial resistance of avian pathogenic Escherichia coli isolates from broiler and broiler breeder chickens in Ontario, Canada. Avian Diseases, 62(3), 291–299.

Veloo, Y., Thahir, S.S.A., Shaharudin, R., & Rajendiran, S. (2025). Multidrug-resistant Escherichia coli in broiler and indigenous farm environments in Klang Valley, Malaysia. Antibiotics, 14(3), 246.

Younis, G., Awad, A., & Mohamed, N. (2017). Phenotypic and genotypic characterization of antimicrobial susceptibility of avian pathogenic Escherichia coli isolated from broiler chickens. Veterinary World, 10(10), 1167–1172.

Published

2026-01-10

How to Cite

Yeptho, A. H., Ghodasara, S. N., Kalaria, V. A., Javia, B. B., & Barad, D. B. (2026). Pentaplex PCR for Rapid and Reliable Detection of Virulence-Associated Genes in Avian Pathogenic Escherichia Coli Isolated from Colibacillosis . Indian Journal of Veterinary Sciences and Biotechnology, 22(1), 47-51. https://doi.org/10.48165/ijvsbt.22.1.09