Capsular Genotyping of Methicillin-Resistant Staphylococcus aureus (MRSA) from Human and Animal Sources Using Duplex PCR
DOI:
https://doi.org/10.48165/ijvsbt.22.1.27Keywords:
cap5K, cap8K, Capsular polysaccharide, Duplex PCR, MRSA, Staphylococcus aureus.Abstract
Capsular polysaccharides, particularly types 5 and 8 encoded by the cap5K and cap8K genes, are key virulence factors in Staphylococcus aureus, contributing to immune evasion through resistance to phagocytosis. This study aimed to determine the prevalence and distribution of these capsule-associated genes among 78 methicillin-resistant S. aureus (MRSA) isolates obtained from various human and animal sources in Western India. Duplex PCR targeting cap5K and cap8K was employed for genotypic characterization. Among the isolates, 75 (96.15%) were typeable, while 3 (3.85%) were non-typeable (NT). The cap5K genotype was the most prevalent (44.87%), followed by cap8K (26.92%), and dual gene presence was 24.36%. Notably, dual gene carriage was more common in human isolates (50.00%), whereas cap5K alone predominated in animal isolates, particularly in unprocessed meat (60.00%) and animal pus (48.00%). The NT strains were exclusively identified in animal pus samples. A Chi-square test revealed a statistically significant association between sample type and capsule gene distribution (χ² = 17.87, p = 0.037). These findings highlight the dominance of cap5K in this region and the influence of host source on capsule gene variation, underlining the importance of ongoing molecular surveillance to understand the epidemiological and pathogenic dynamics of MRSA.
Downloads
References
Alkatheri, A. H., Yap, P. S. X., Abushelaibi, A., Lai, K. S., Cheng, W. H., & Lim, S. H. E. (2022). Host-bacterial interactions: Outcomes of antimicrobial peptide applications. Membranes, 12(7), 715.
Bhati, T., & Kataria, A. K. (2019). Characterization of Staphylococcus aureus isolates from mastitic milk, udder surfaces and milkers’ hands from arid and semi-arid regions of India for capsular (cap5K and cap8K) and collagen adhesin (cna) genes. Indian Journal of Animal Sciences, 89(11), 1184–1187.
Brakstad, O. G., Aasbakk, K., & Maeland, J. A. (1992). Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. Journal of Clinical Microbiology, 30(7), 1654–1660.
Camussone, C., Rejf, P., Pujato, N., Schwab, A., Marcipar, I., & Calvinho, L. F. (2012). Genotypic and phenotypic detection of capsular polysaccharides in Staphylococcus aureus isolated from bovine intramammary infections in Argentina. Brazilian Journal of Microbiology, 43, 1010–1014.
Diwakar, A., Kataria, A. K., & Kumar, S. (2023). Molecular characterization of Staphylococcus aureus capsules in caprine clinical mastitis. The Pharma Innovation Journal, 12(7S), 1809–1812.
Elbehiry, A., Marzouk, E., Moussa, I., Anagreyyah, S., AlGhamdi, A., Alqarni, A., & Abu-Okail, A. (2023). Using protein fingerprinting for identifying and discriminating methicillin-resistant Staphylococcus aureus isolates from inpatient and outpatient clinics. Diagnostics, 13(17), 2825.
Gao, S., Jin, W., Quan, Y., Li, Y., Shen, Y., Yuan, S., & Wang, Y. (2024). Bacterial capsules: Occurrence, mechanism, and function. NPJ Biofilms and Microbiomes, 10(1), 21.
Gharaibeh, M. H., & Abu-Qatouseh, L. F. (2022). First molecular characterization of capsule expression and antibiotic susceptibility profile of Staphylococcus aureus isolates from bovine mastitis in Jordan. Veterinary World, 15(9), 2269–2274.
Khichar, V., Ruhil, S., Choudhary, V., Khyalia, M. K., & Kataria, A. K. (2014). Genotyping of Staphylococcus aureus obtained from skin wounds of camel (Camelus dromedarius) based on capK genes. Journal of Camel Practice and Research, 23(2), 227–231.
Kumar, R., Yadav, B. R., & Singh, R. S. (2011). Antibiotic resistance and pathogenicity factors in Staphylococcus aureus isolated from mastitic Sahiwal cattle. Journal of Biosciences, 36(1), 175–188.
Li, X., Xie, L., Huang, H., Li, Z., Li, G., Liu, P., & Zeng, Z. (2022). Prevalence of livestock-associated MRSA ST398 in a swine slaughterhouse in Guangzhou, China. Frontiers in Microbiology, 13, 914764.
Mehrotra, M., Wang, G., & Johnson, W. M. (2000). Multiplex PCR for detection of genes for Staphylococcus aureus enterotoxins, exfoliative toxins, toxic shock syndrome toxin 1, and methicillin resistance. Journal of Clinical Microbiology, 38(3), 1032–1035.
Nathawat, P., Bhati, T., Sharma, S. K., Yadav, R., & Kataria, A. K. (2015). Characterization of Staphylococcus aureus of goat mastitis milk origin for cap and clfA genes. Journal of Pure and Applied Microbiology, 9(2), 1055–1061.
Ouyang, Q., Yang, Y., Ali, S., Wang, L., Li, H., & Chen, Q. (2021). Upconversion nanoparticles-based FRET system for sensitive detection of Staphylococcus aureus. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 255, 119734.
Proietti, P. C., Coppola, G., Bietta, A., Marenzoni, M. L., Hyatt, D. R., Coletti, M., & Passamonti, F. (2010). Characterization of genes encoding virulence determinants and toxins in Staphylococcus aureus from bovine milk in Central Italy. Journal of Veterinary Medical Science, 72(11), 1443–1448.
Quinn, P. J., Carter, M. E., Markey, B., & Carter, G. R. (1994). Clinical veterinary microbiology. Wolf/Mosby, London, UK.
Reinoso, E. B., El-Sayed, A., Lämmler, C., Bogni, C., & Zschöck, M. (2008). Genotyping of Staphylococcus aureus isolated from humans, bovine subclinical mastitis and food samples in Argentina. Microbiological Research, 163(3), 314–322.
Salimena, A. P., Lange, C. C., Camussone, C., Signorini, M., Calvinho, L. F., Brito, M. A., & Piccoli, R. H. (2016). Genotypic and phenotypic detection of capsular polysaccharide and biofilm formation in Staphylococcus aureus isolated from bovine milk collected from Brazilian dairy farms. Veterinary Research Communications, 40(3), 97–106.
Sharma, S. K., Mehta, S. C., & Kataria, A. K. (2016). Capsular typing of Staphylococcus aureus isolates from camel and other domestic animals using duplex polymerase chain reaction. Journal of Camel Practice and Research, 23(1), 81–84.
Singhal, V., Bhati, T., Dhakarwal, P., Sharma, S., Milind, M., & Shringi, B. N. (2021). Capsular typing of cap5K and cap8K genes in Staphylococcus aureus isolates from woundsamples of cattle. International Journal of Current Microbiology and Applied Sciences, 10(2), 122–128.
Soares, B. S., Melo, D. A., Motta, C. C., Marques, V. F., Barreto, N. B., Coelho, S. M. O., & Souza, M. M. S. (2017). Characterization of virulence and antibiotic profile and agr typing of Staphylococcus aureus from milk of subclinical bovine mastitis in the State of Rio de Janeiro. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 69, 843–850.
Straub, J. A., Hertel, C., & Hammes, W. P. (1999). A 23S rDNA-targeted polymerase chain reaction-based system for detection of Staphylococcus aureus in meat starter cultures and dairy products. Journal of Food Protection, 62(10), 1150–1156.
Touaitia, R., Mairi, A., Ibrahim, N. A., Basher, N. S., Idres, T., & Touati, A. (2025). Staphylococcus aureus: A review of the pathogenesis and virulence mechanisms. Antibiotics, 14(5), 470.
Upadhyay, A., Kataria, A. K., Sharma, R., & Singh, G. (2010). Capsular typing of Staphylococcus aureus isolates from cattle and goat mastitis by PCR targeting cap5K and cap8K genes. Indian Journal of Animal Sciences, 80(11), 1062.
Verdier, I., Durand, G., Bes, M., Taylor, K. L., Lina, G., Vandenesch, F., & Etienne, J. (2007). Identification of the capsular polysaccharides in Staphylococcus aureus clinical isolates by PCR and agglutination tests. Journal of Clinical Microbiology, 45(3), 725–729.
Yadav, R., Sharma, S. K., Yadav, J., Nathawat, P., & Kataria, A. K. (2015). Phenotypic and genotypic characterization of Staphylococcus aureus of mastitic milk origin from cattle and buffalo for some virulence properties. Journal of Pure and Applied Microbiology, 9(1), 425–431.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Indian Journal of Veterinary Sciences and Biotechnology

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

