Isolation and Molecular Characterization of Extended Spectrum Beta-lactamase (ESBL) Producing Escherichia Coli from Dogs

Authors

  • Tamilarasu Singaravelan Department of Veterinary Microbiology, Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry– 605 009, India.
  • Prabhaker X. Antony Department of Veterinary Microbiology, Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry– 605 009, India
  • Jayalakshmi Vasu Department of Veterinary Microbiology, Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry– 605 009, India.
  • Mouttou V. Srinivas Department of Veterinary Microbiology, Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry– 605 009, India.
  • Venkatesa P. Shanmugam Department of Veterinary Biochemistry Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry– 605 009, India.
  • Selvi Shanmugam Department of Veterinary Biochemistry Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry– 605 009, India.
  • Selvi Darmalingam Department of Veterinary Medicine, Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry– 605 009, India.
  • Hirak K. Mukhopadhyay Department of Veterinary Microbiology, Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry– 605 009, India.

DOI:

https://doi.org/10.48165/ijvsbt.18.4.18

Keywords:

Antimicrobial resistance, E. coli, ESBL, Dogs, Genotypic confirmation Public health

Abstract

The present study was aimed to isolate and characterize the Extended Spectrum Beta-lactamase (ESBL) producing Escherichia coli from faecal samples of dogs in Puducherry, India. In this study, 100 E. coli isolates were obtained from 50 healthy dogs and 50 diarrheic  dogs, out of which 33 (33%) isolates were confirmed as ESBL producers by the combination disc method. All the E. coli isolates were  genotypically confirmed for the presence of genes responsible for ESBL production. Out of 100 E. coli isolates, fourteen (14%), seven  (7%) and three (3%) isolates were found to be positive for blaTEM, SHV and CTX-M genes, respectively. The present study highlighted  ESBL-producing E. coli in dogs in Puducherry region. 

Downloads

Download data is not yet available.

References

Albrechtova, K., Dolejska, M., Cizek, A., Tausova, D., Klimes, J., Bebora, L. & Literak, I. (2012). Dogs of nomadic pastoralists in northern Kenya are reservoirs of plasmid mediated cephalosporin - and quinolone-resistant Escherichia coli, including pandemic clone B2-O25- ST131. Antimicrobial Agents and Chemotherapy, 56, 4013-4017.

Bergey’s Manual of Systematic Bacteriology, (1984). Vol 1 (edited by Kreig N.R.) & Vol II (edited by Sneath PHA) Williams & Wilkins.

Bhattacharjee, A., Sen, M.R., Anupurba, S., Prakash, P. & Nath, G. (2007). Detection of OXA-2 group extended-spectrum-β lactamase-producing clinical isolates of Escherichia coli from India. Journal of antimicrobial chemotherapy, 60,Bush, K., Jacoby, G.A., & Medeiros, A.A. (1995). A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrobial agents and chemotherapy, 39, 1211.

Bush, K. & Jacoby, GA.. (2010). Updated functional classification of β-lactamases. Antimicrobial Agents and Chemotherapy, 54, 969-976.

Clinical and Laboratory Standards institute. (2019). Performance Standards for Antimicrobial Susceptibility Testing: Twenty Fourth Informational Supplement. M100-S24. Clinical and Laboratory Standards Institute, Wayne, PA, USA.

Das, A., Guha, C., Biswas, U., Jana, P.S., Chatterjee, A. & Samanta, I. (2017). Detection of emerging antibiotic resistance in bacteria isolated from subclinical mastitis in cattle in West Bengal. Veterinary world, 10, 517.

Dierikx, C.M., van der Goot, J.A., Smith, H.E., Kant, A. & Meviu, D.J. (2013). Presence of ESBL/AmpC-producing Escherichia coli in the broiler production pyramid: a descriptive study. PloS one, 8, 79005.

Dutta, T.K., Warjri, I., Roychoudhury, P., Lalzampuia, H., Samanta, I., Joardar, S.N., Bandyopadhyay, S. & Chandra R (2013). ESBL producing E. coli isolate possessing shiga toxin gene (stx1) belonging to O64 serogroup associated with human disease in India. Journal of Clinical Microbiology, 00575.

Eiamphungporn, W., Schaduangrat, N., Malik, A.A. & Nantasenamat, C. (2018). Tackling the antibiotic resistance caused by class A β-lactamases through the use of β-lactamase inhibitory protein. International Journal of Molecular Sciences, 19, 2222.

Ewers, C., Grobbel, M., Stamm, I., Kopp, P.A., Diehl, I., Semmler, T., Fruth, A., Beutlich, J., Guerra, B., Wieler, L.H. & Guenther, S. (2010). Emergence of human pandemic O25: H4-ST131 CTX M-15 extended-spectrum-β-lactamase-producing Escherichia coli among companion animals. Journal of Antimicrobial Chemotherapy, 65, 651-660.

Falagas, M.E. & Karageorgopoulos, D.E. (2009). Extended-spectrum β-lactamase-producing organisms. Journal of Hospital Infection, 73, 345-54.

Giraud-Morin C, Madinier I & Fosse T (2003).Sequence analysis of cfxA2-like β-lactamases in Prevotella species. Journal of Antimicrobial Chemotherapy, 51, 1293-1296.

Gundran, R.S., Cardenio, P.A., Villanueva, M.A., Sison, F.B., Benigno, C.C., Kreausukon, K., Pichpol, D. & Punyapornwithaya, V. (2019). Prevalence and distribution of blaCTX-M, blaSHV, blaTEM genes in extended-spectrum β-lactamase-producing E. coli isolates from broiler farms in the Philippines. BMC Veterinary Research, 15, 227.

Hordijk, J., Wagenaar, J.A., van de Giessen, A., Dierikx, C., van Essen- Zandbergen, A., Veldman, K., Kant, A. & Mevius, D.(2013). Increasing prevalence and diversity of ESBL/AmpC-type β-lactamase genes in Escherichia coli isolated from veal calves from 1997 to 2010. Journal of Antimicrobial Chemotherapy, 68, 1970-1973.

Huber, H., Zweifel, C., Wittenbrink, M.M. & Stephan, R. (2013). ESBL producing uropathogenicEscherichia coli isolated from dogs and cats in Switzerland. Veterinary Microbiology, 162, 992-6.

Knothe, H., Shah, P., Krcmery, V., Antal, M. & Mitsuhashi, S. (1983). Transferable resistance to cefotaxime, cefoxitin, cefamandole

and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection, 11, 315-7.

Mandakini, R., Dutta, T.K., Chingtham, S., Roychoudhury,P., Samanta, I., Joardar, S.N., Pachauau, A.R. & Chandra, R. (2015). ESBL producing Shiga-toxigenic E. coli (STEC) associated with piglet diarrhoea in India. Tropical Animal Health and Production, 47, 377-81.

O’Keefe, A., Hutton, T.A., Schifferli, D.M. & Rankin, S.C. (2010). First detection of CTX-M and SHV extended-spectrum beta lactamases in Escherichia coli urinary tract isolates from dogs and cats in the United States. Antimicrobial Agents and Chemotherapy, 54, 3489–3492.

Prestinaci, F., Pezzotti, P. & Pantosti A. (2015). Antimicrobial resistance: a global multifaceted phenomenon. Pathogens and Global Health, 109, 309–318.

Rawat, N., Maansi, D.K. & Upadhyay, A.K.(2018). Virulence typing and antibiotic susceptibility profiling of thermophilic Campylobacters isolated from poultry, animal, and human species. Veterinary world, 11, 1698.

Samanta, I., Joarder, S.N., Das, P.K., & Sar, T.K. (2015). Comparitive possession of shiga toxin, intimin, enetrohaemolysin and major extended-spectrum-β-lactamases genes in E. coli isolated from backyard and farmed poultry. Iranian Journal of Veterinary research. 16, 90.

Schmiedel, J., Falgenhauer, L., Domann, E., Bauerfeind, R., Prenger Berninghoff, E., Imirzalioglu, C. & Chakraborty, T. (2014). Multiresistant extended-spectrum β-lactamase-producing Enterobacteriaceae from humans, companion animals and horses in central Hesse, Germany. BMC Microbiology, 14, 187.

So, J.H., Kim, J., Bae, I.K., Jeong, S.H., Kim, S.H., Lim, S.K., Park, Y.H. & Lee, K. (2012). Dissemination of multidrug-resistant Escherichia coli in Korean veterinary hospitals. Diagnostic Microbiology and Infectious Disease, 73, 195-9.

Tamang, M.D., Nam, H.M., Jang, G.C., Kim, S.R., Chae, M.H., Jung, S.C., Byun, J.W., Park, Y.H.& Lim, S.K. (2012). Molecular characterization of extended-spectrum-β-lactamase producing and plasmid-mediated AmpC β-lactamase producing Escherichia coli isolated from stray dogs in South Korea. Antimicrobial agents and chemotherapy. 56, 2705-12.

Tewari, R., Mitra, S., Ganie, F., Das, S., Chakraborty, A., Venugopal, N., & Shome, B.R. (2019). Dissemination and characterization of E.coli producing extended-spectrum-β-lactamases, AmpC β-lactamases and metallo- β-lactamases from livestock and poultry in Northeast India: A molecular surveillance approach. Journal of global antimicrobial resistance. 17, 209-215.

Yokoigawa, K., Inoue, K., Okubo, Y. & Kawai, H. (1999). Primers for amplifying an alanine racemase gene fragmentto detect E. coli strains in foods. Journal of food science, 64, 571-575. Zaman, S.B., Hussain, M.A., Nye, R., Mehta, V., Mamun, K.T. & Hossain

N. (2017). A Review on Antibiotic Resistance: Alarm Bells are Ringing. Cureus, 9, e1403.

Zhang, J., Zheng, B, Zhao, L., Wei, Z., Ji, J., Li, L. & Xiao, Y. (2014). Nationwide high prevalence of CTX-M and an increase of CTX-M-55 in Escherichia coli isolated from patients with community-onset infections in Chinese county hospitals. BMC infectious diseases, 14, 659.

Downloads

Published

2022-09-15

How to Cite

Singaravelan, T., Antony, P.X., Vasu, .J., Srinivas, M.V., Shanmugam, V.P., Shanmugam, .S., … Mukhopadhyay, H.K. (2022). Isolation and Molecular Characterization of Extended Spectrum Beta-lactamase (ESBL) Producing Escherichia Coli from Dogs. Indian Journal of Veterinary Sciences and Biotechnology, 18(4), 86–91. https://doi.org/10.48165/ijvsbt.18.4.18