Molecular Detection and Antibiogram of Bacterial Isolates from Canine Pyoderma Cases

Authors

  • Chaithanya Milandahalli 1Department of Animal Husbandry and Veterinary Services, Government of Karnataka, India
  • Ramesh Poojary Thimmaiah Department of Veterinary Medicine, Veterinary College, Hebbal, Bengaluru-560024, Karnataka Veterinary, Animal and Fisheries Sciences University, Karnataka, India
  • Chandrashekar Kodavenakapalli Munishamy Department of Veterinary Microbiology, Veterinary College, Gadag-582101, Karnataka Veterinary, Animal and Fisheries Sciences University, Karnataka, India
  • Lathamani Venkatapura Shekharaiah Department of Veterinary Medicine, Veterinary College, Hebbal, Bengaluru-560024, Karnataka Veterinary, Animal and Fisheries Sciences University, Karnataka, India
  • Anjan Kumar Keeramande Ramakrishna Department of Veterinary Pathology, Veterinary College, Hassan-573202 Karnataka Veterinary, Animal and Fisheries Sciences University, Karnataka, India
  • Renukaradhya Gudepalya Jayanna Department of Veterinary Gynaecology and Obstetrics, Veterinary College, Gadag-582101, Karnataka Veterinary, Animal and Fisheries Sciences University, Karnataka, India

DOI:

https://doi.org/10.48165/ijvsbt.20.4.10

Keywords:

Antibiotic susceptibility, Canine pyoderma, Meropenem,, PCR, Penicillin G, Staphylococcus.

Abstract

Canine pyoderma is one of the most common causes of dermatitis with worldwide occurrence in small animal practice. This study was  carried out to identify bacterial isolates by simplex, multiplex PCR and to know its antibiotic susceptibility profile from canine pyoderma  cases. Staphylococcus intermedius (n=17, 53%) was the major species identified followed by Staphylococcus schleiferi (n=10, 32%),  Staphylococcus aureus (n=6, 15%), Pseudomonas aeruginosa (n=5, 12.5%) and Escherichia coli (n=3, 7.5%) by PCR. Antibiogram profile  of Staphylococcus isolates showed sensitive to enrofloxacin (84.37%), ceftriaxone (81.25%), ceftriaxone/tazobactam (62.5%), whereas  P. aueroginosa was sensitive to meropenem (100%), ciprofloxacin (100%), ceftriaxone/tazobactam (80%) and E. coli was sensitive to  meropenem (100%), ceftriaxone/tazobactam (100%), ampicillin/sulbactam (100%). All isolates of this study were resistant to pencillin  G, clindamycin (P. aueroginosa and E. coli), co-trimoxazole (Staphyloccous spp. & P. aueroginosa) and streptomycin (E. coli) indicating  frequent and indiscriminate use of these antimicrobials in pyoderma treatment.

Downloads

Download data is not yet available.

References

Andrade, M., Oliveira, K., Morais, C., Abrantes, P., Pomba, C., Rosato, A.E., Couto, I., & Costa, S.S. (2022). Virulence potential of biofilm-producing Staphylococcus pseudintermedius, Staphylococcus aureus and Staphylococcus coagulans causing skin infections in companion animals. Antibiotics, 11(10), 1339.

Ankita, & Gandge, R.S. (2018). Prevalence and antibiotic susceptibility pattern of Staphylococcus species in canine skin infection. International Journal of Current Microbiology and Applied Sciences, 7(6), 2305-2313.

Bauer, A.W., Kirby, W.M., Sherris, J.C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4), 493-496.

Bej, A.K., DiCesare, J.L., Haff, L., & Atlas, R.M. (1991). Detection of E. coli and Shigella spp. in water by using the polymerase chain Reaction and gene probes for uid. Applied Environmental Microbiology, 57(4), 1013-1017.

Botoni, L.S., Scherer, C.B., Silva, R.O., Coura, F.M., Heinemann, M.B., Paes-Leme, F.O., & Costa-Val, A.P. (2016). Prevalence and in vitro susceptibility of methicillin-resistant Staphylococcus

pseudintermedius (MRSP) from skin and nostrils of dogs with superficial pyoderma. Pesquisa Veterinaria Brasileira, 36(12), 1178-1180.

Chaudhary, A.K., Kumar, A., & Shrivastva, M. (2019). Study on prevalence and resistance patterns of bacterial pathogens isolated from canine pyoderma. International Journal of Current Microbiology and Applied Sciences, 8(1), 2305-2311.

CLSI (Clinical and laboratory Standards Institute) (2020), Performance standards for antimicrobial susceptibility testing, M100S, 30th ED., CLSI Vol.-40, N0. 1, Jan-2020, CLSI, Wayne, PA 19087 USA.

Degi, J., Motco, O.A., Degi, D.M., Suici, T., Mares, M., Imre, K., & Cristina, R.T. (2021). Antibiotic susceptibility profile of Pseudomonas aeruginosa canine isolates from a multicentric study in Romania. Antibiotics, 10(1), 846.

Hariharan, H., Gibson, K., Peterson, R., Frankie, M., Matthew, V., Daniels, J., Martin, N.A., Andrews, L., Paterson, T., & Sharma, R.N. (2014). Staphylococcus pseudintermedius and Staphylococcus schleiferi Subspecies coagulans from canine pyoderma cases in Grenada, West Indies, and their susceptibility to beta-lactam drugs. Veterinary Medicine International, 2014, 1-7.

Khinchi, R.K., Gaurav, A, Manju, Sharma, S.K., & Solanki, S. (2022). Antibiotic susceptibility pattern of bacterial pathogens isolated from canine superficial pyoderma. Current Journal of Applied Sciences and Technology, 41(43), 17-22.

Makwana, P.M., Parmar, S.M., Vala, J.A., Parasana, D.K., Patel, D.R., Kalyani, I.H., & Solanki, J.B. (2023). Molecular characterization and antimicrobial-resistant pattern of Staphylococcus species isolated from pyoderma cases in dogs. Biological Forum, 15(11), 82-87.

Marco-Fuertes, A., Marin, C., Gimeno-Cardona, C., Artal-Munoz, V., Vega, S., & Montoro-Dasi, L. (2024). Multidrug resistant commensal and infection causing Staphylococcus spp. isolated

from companion animals in the Valencia Region. Veterinary Science, 11(2), 54.

Meroni, G., Filipe, J.F., Drago, L., & Martino, P.A. (2019). Investigation on antibiotic-resistance, biofilm formation and virulence factors in multidrug resistant and non multi drug resistant Staphylococcus pseudintermedius. Microorganisms, 7(12), 702.

Naveena, A., Kavitha, K.L., Kumar, N.V., & Babu, A.J. (2023). Clinical epidemiology and cutaneous microbiota associated with canine pyoderma. Haryana Veterinarian, 62(SI), 26-30.

Rafatpanah, S., Rad, M., Movassaghi, A.R., & Khoshnegah, J. (2020). Clinical, bacteriological and histopathological aspects of first time pyoderma in a population of Iranian domestic dogs: a retrospective study. Iranian Journal of Veterinary Research, 21(2), 130-135.

Ravens, P.A., Vogelnest, L.J., Ewen, E., Bosward, K.L., & Norris, J.M. (2014). Canine superficial bacterial pyoderma: Evaluation of skin surface sampling methods and antimicrobial susceptibility of causal Staphylococcus isolates. Australian Veterinary Journal, 92(5), 149-155.

Reddy, B.S., Kumari, K.N., Pramila, D.R., & Sivajothi, S. (2014). Isolation of bacteria in dogs with recurrent pyoderma in Andhra Pradesh. Journal of Life Sciences, 4(3), 15-18.

Reddy, B.S., Kumari, K.N., Rao, V.V., & Rayulu, V.C. (2011). Cultural isolates and the pattern of antimicrobial sensitivity of whole cultures from recurrent pyoderma in dogs. Indian Journal of Field Veterinarian, 7(1), 40-42.

Sasaki, T., Tsubakishita, S., Tanaka, Y., Sakusabe, A., Ohtsuka, M., Hirotaki, S., Kawakami, T., Fukata, T., & Hiramatsu, K. (2010). Multiplex-PCR method for species identification of coagulase positive staphylococci. Journal of Clinical Microbiology, 48(3), 765-769.

Published

2024-07-01

How to Cite

Milandahalli, C., Thimmaiah, R.P., Munishamy, C.K., Shekharaiah, L.V., Ramakrishna, A.K.K., & Jayanna, R.G. (2024). Molecular Detection and Antibiogram of Bacterial Isolates from Canine Pyoderma Cases . Indian Journal of Veterinary Sciences and Biotechnology, 20(4), 45–49. https://doi.org/10.48165/ijvsbt.20.4.10