Pathophysiology and Theranostic Approaches to CanineCognitive Dysfunction Syndrome

Authors

  • Apeksha Khare Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, South Civil Lines, Jabalpur-482001, Madhya Pradesh, India.
  • Yash Kumar Verma Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, South Civil Lines, Jabalpur-482001, Madhya Pradesh, India.
  • Amita Dubey Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, South Civil Lines, Jabalpur-482001, Madhya Pradesh, India.
  • Yamini Verma Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, South Civil Lines, Jabalpur-482001, Madhya Pradesh, India.
  • Madhu Swamy Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, South Civil Lines, Jabalpur-482001, Madhya Pradesh, India.
  • Ankur Khare Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, South Civil Lines, Jabalpur-482001, Madhya Pradesh, India.

DOI:

https://doi.org/10.48165/ijvsbt.20.3.01

Keywords:

ageing, amyloid protein, behaviour, cognition, Dogs, neurodegeneration, tau protein

Abstract

Canine cognitive dysfunction syndrome is a common behavioral disorder of geriatric dogs prevailing in the world including India. The etiology is not confirmed yet, however, the main pathological change is age-related and progressive amyloid protein deposition in the brains of affected dogs. The syndrome usually goes unnoticed due to unawareness among caretakers and non-specific clinical signs such as altered behaviour and cognition. When detected early, environmental enrichment, nutritive diet and supportive therapeutic agents can be beneficial in procrastinating the disorder and improving the quality of life of the animal.

Downloads

Download data is not yet available.

References

Azkona, G., Garcia‐Belenguer, S., Chacon, G., Rosado, B., Leon, M. and Palacio, J. (2009). Prevalence and risk factors of behavioural changes associated with age‐related cognitive impairment in geriatric dogs. J. Small Anim. Pract., 50: 87-91.

Bain, M.J., Hart, B.L., Cliff, K.D. and Ruehl, W.W. (2001). Predicting behavioral changes associated with age-related cognitive impairment in dogs. J. Am. Vet. Med. Assoc., 218: 1792-1795.

Benzal, A.S. and Rodriguez, A.G. (2016). Recent developments in Canine cognitive dysfunction syndrome. Pet Behav. Sci., 1: 47-59.

Borghys, H., Van Broeck, B., Dhuyvetter, D., Jacobs, T., De Waepenaert, K., Erkens, T., Melissa, B., Sandy, T. and Araujo, J.A. (2017). Young to middle-aged dogs with high amyloid-β levels in cerebrospinal fluid are impaired on learning in standard cognition tests. J.Alzheimer's Dis., 56: 763-774.

Canudas, J., Insua, D., Sarasa, L., Gonzalez-Martinez, A., Suarez, M.L., Santamarina, G., Pesini, P. and Sarasa, M. (2014). Neprilysin is poorly expressed in the prefrontal cortex of aged dogs with cognitive dysfunction syndrome. Int. J. Alzheimer’s Dis., 2014: 1-7.

Da Silva, B.C., Gneiding, B., Lucioli, J., Tesser, J.S. and Gneiding, J.D.O. (2018). Canine cognitive dysfunction syndrome: literature review. Rev. Acad. Cienc. Anim., 16: 1-15.

Dewey, C.W., Davies, E.S., Xie, H. and Wakshlag, J.J. (2019). Canine cognitive dysfunction: pathophysiology, diagnosis and treatment. Vet. Clin. North Am. Small Anim. Pract., 49: 477-499.

Dewey, C.W., Rishniw, M., Johnson, P.J., Davies, E.S., Sackman, J.J., O’Donnell, M. and Robinson, K. (2020). Interthalamic adhesion size in aging dogs with presumptive spontaneous brain microhemorrhages: a comparative retrospective MRI study of dogs with and without evidence of canine cognitive dysfunction. Peer J., 8: 9012.

Dewey, C.W., Brunke, M.W. and Sakovitch, K. (2022). Transcranial photobiomodulation (laser) therapy for cognitive impairment: a review of molecular mechanisms and potential application to canine cognitive dysfunction (CCD). Open Vet. J., 12: 256-263.

Enengl, J., Hamblin, M.R. and Dungel, P. (2020). Photobiomodulation for Alzheimer’s disease: translating basic research to clinical application. J. Alzheimer's Dis., 75: 1073-1082.

Fast, R., Schutt, T., Toft, N., Moller, A. and Berendt, M. (2013). An observational study with long‐term follow‐up of canine cognitive dysfunction: clinical characteristics, survival and risk factors. Vet. Intern. Med., 27: 822-829.

Geda, Y.E., Roberts, R.O., Knopman, D.S., Christianson, T.J., Pankratz, V.S., Ivnik, R.J. and Rocca, W.A. (2010). Physical exercise, aging and mild cognitive impairment: a population-based study. Arch. Neurol., 67: 80-86.

Gonzalez-Martinez, A., Rosado, B., Pesini, P., García-Belenguer, S., Palacio, J., Villegas, A. and Sarasa, M. (2013). Effect of age and severity of cognitive dysfunction on two simple tasks in pet dogs. Vet. J., 198: 176-181.

Gupta, R.C., Doss, R.B., Srivastava, A., Lall, R. and Sinha, A. (2019). Nutraceuticals for cognitive dysfunction. In: Gupta, R., Srivastava, A. and Lall, R., editors. Nutraceuticals in Veterinary Medicine. Springer. Cham, Switzerland, pp. 393-415.

Head, E., Callahan, H., Cummings, B.J., Cotman, C.W., Ruehl, W.W., Muggenberg, B.A. and Milgram, N.W. (1997). Open field activity and human interaction as a function of age and breed in dogs. Physiol. Behav., 62: 963–971.

Heath, S.E., Barabas, S. and Craze, P.G. (2007). Nutritional supplementation in cases of canine cognitive dysfunction-a clinical trial. Appl. Anim. Behav. Sci., 105: 284-296.

Katina, S., Farbakova, J. and Madari, A. (2016). Risk factors for canine cognitive dysfunction. Vet. J., 188: 331-336.

Khare, A., Dubey, A., Verma, Y., Tiwari, A., Verma, Y.K. and Karthik, I. (2023). Animal models of neurodegenerative diseases. Acta Sci. Vet. Sci., 5(7): 3-10.

Kumar, K., Agrawal, R., Pande, N., Tikoo, A. and Singh, R. (2021). Behavioral changes associated with age-related cognitive impairment in geriatric dogs. J. Pharm. Innov., 10: 2002-2004.

Landsberg, G.M., Nichol, J. and Araujo, J.A. (2012). Cognitive dysfunction syndrome: a disease of canine and feline brain aging. Vet. Clin. North Am. Small Anim. Pract., 42: 749-768.

Madari, A., Farbakova, J., Katina, S., Smolek, T., Novak, P., Weissova, T. and Zilka, N. (2015). Assessment of severity and progression of canine cognitive dysfunction syndrome using the canine dementia scale (CADES). Appl. Anim. Behav. Sci., 171: 138-145.

Manteca, X. (2011). Nutrition and behavior in senior dogs. Top. Companion Anim. Med., 26: 33-36.

Mariotti, V.M., Landucci, M., Lippi, I., Amat, M., Manteca, X. and Guidi, G. (2009). Epidemiological study of behavioural disorders in elderly dogs. In: 7th International Meeting of Veterinary Behaviour Medicine. European Society of Veterinary Clinical Ethology. Belgium, pp. 241-243.

Milgram, N.W., Araujo, J.A., Greig, N.H., Ingram, D.K., Sandin, J. and De Rivera, C. (2011). Cholinesterase inhibitors improve both memory and complex learning in aged beagle dogs. J.Alzheimer's Dis., 26: 143-155.

Mondino, A., Gutierrez, M., Gonzalez, C., Mateos, D., Torterolo, P., Olby, N. and Delucchi, L. (2022). Electroencephalographic signatures of dogs with presumptive diagnosis of canine cognitive dysfunction. Res. Vet. Sci., 150: 36-43.

Nabi, S.U., Dey, S., Gupta, G., Kumar, A., Vala, J. and Jan, M.H. (2010). A study of neuromuscular dysfunctions in geriatric dogs. Haryana Vet, 49: 73-74.

Naeser, M.A., Zafonte, R., Krengel, M.H., Martin, P.I., Frazier, J., Hamblin, M.R., Knight, J.A., Meehan III, W.P. and Baker, E.H. (2014). Significant improvements in cognitive performance post-transcranial, red/near-infrared light-emitting diode treatments in chronic, mild traumatic brain injury: open-protocol study. J. Neurotrauma, 31: 1008-1017.

Neilson, J.C., Hart, B.L., Cliff, K.D. and Ruehl, W.W. (2001). Prevalence of behavioral changes associated with age-related cognitive impairment in dogs. J. Am. Vet. Med., 218: 1787-1791.

Osella, M.C., Re, G., Odore, R., Girardi, C., Badino, P., Barbero, R. and Bergamasco, L. (2007). Canine cognitive dysfunction syndrome: prevalence, clinical signs and treatment with a neuroprotective nutraceutical. Appl. Anim. Behav. Sci., 105: 297-310.

Ozawa, M., Inoue, M., Uchida, K., Chambers, J.K., Takeuch, Y. and Nakayama, H. (2019). Physical signs of canine cognitive dysfunction. J. Vet. Med. Sci., 19: 41-58.

Phochantachinda, S., Chantong, B., Reamtong, O. and Chatchaisak, D. (2021). Change in the plasma proteome associated with canine cognitive dysfunction syndrome (CCDS) in Thailand. BMC Vet. Res., 17: 1-14.

Prpar Mihevc, S. and Majdic, G. (2019). Canine cognitive dysfunction and Alzheimer’s disease–two facets of the same disease. Front. Neurosci., 13: 604.

Ridge, P.G. and Kauwe, J.S. (2018). Mitochondria and Alzheimer’s disease: the role of mitochondrial genetic variation. Curr. Genet. Med. Rep., 6: 1-10.

Romanucci, M. and Della Salda, L. (2015). Oxidative stress and protein quality control systems in the aged canine brain as a model for human neurodegenerative disorders. Oxid. Med. Cell. Longev., 2015: 1-8.

Salvin, H.E., McGreevy, P.D., Sachdev, P.S. and Valenzuela, M.J. (2010). Under diagnosis of canine cognitive dysfunction: a cross-sectional survey of older companion dogs. Vet. J., 184: 277-281.

Salvin, H.E., McGreevy, P.D., Sachdev, P.S. and Valenzuela, M.J. (2011). The canine cognitive dysfunction rating scale (CCDR): a data-driven and ecologically relevant assessment tool. Vet. J., 188: 331-336.

Sanchez, M.P., Garcia-Cabrero, A.M., Sanchez-Elexpuru, G., Burgos, D.F. and Serratosa, J.M. (2018). Tau-induced pathology in epilepsy and dementia: notions from patients and animal models. Int. J. Mol. Sci., 19: 1092.

Schmidt, F., Boltze, J., Jager, C., Hofmann S., Willems, N., Seeger, J., Hartig, W. and Stolzing, A. (2015). Detection and quantification of β-amyloid, pyroglutamil Aβ and tau in aged canines. J. Neuropathol. Exp. Neurol., 74: 912-923.

Sorrentino, V., Romani, M., Mouchiroud, L., Beck, J.S., Zhang, H., D’Amico, D., Moullan, N., Potenza, F., Schmid, A.W., Rietsch, S., Counts, S.E. and Auwerx, J. (2017). Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity. Nature, 552: 187-193.

Urfer, S.R., Darvas, M., Czeibert, K., Sandor, S., Promislow, D.E., Creevy, K.E. and Kaeberlein, M. (2021). Canine cognitive dysfunction (CCD) scores correlate with amyloid beta 42 levels in dog brain tissue. Geosci., 43: 2379-2386.

Vite, C.H. and Head, E. (2014). Aging in the canine and feline brain. Vet. Clin. North Am. Small Anim. Pract., 44: 1113-1129.

Wang, P. and Li, T. (2019). Which wavelength is optimal for transcranial low‐level laser stimulation. J. Biophotonics, 12: e201800173.

Youssef, S.A., Capucchio, M.T., Rofina, J.E. and Chambers, J.K. (2018). Pathology of brain aging and animal models of neurodegenerative diseases. Vet. Pathol., 53: 327-348.

Yu, C.H., Song, G.S., Yhee, J.Y., Kim, J.H., Im, K.S., Nho, W.G. and Sur, J.H. (2011). Histopathological and immunohistochemical comparison of the brain of human patients with Alzheimer’s disease and the brain of aged dogs with cognitive dysfunction. J. Comp. Pathol., 145: 45-58.

Published

2024-05-10

How to Cite

Khare, A., Verma, Y.K., Dubey, A., Verma, Y., Swamy, M., & Khare, A. (2024). Pathophysiology and Theranostic Approaches to CanineCognitive Dysfunction Syndrome. Indian Journal of Veterinary Sciences and Biotechnology, 20(3), 1–7. https://doi.org/10.48165/ijvsbt.20.3.01