An Experimental Study of Smart Sub Surface Precision Irrigation System

Authors

  • Kunj Thakor Computer Science And Engineering and Technology Parul University Vadodara, Gujrat, India. Author
  • Ankit Chauhan Computer Science And Engineering and Technology Parul University Vadodara, Gujrat, India. Author

Keywords:

Artificial Intelligence, Irrigation System, Linear Regression, Productivity, Machine Learning

Abstract

In farming, a smart subsurface accuracy  water system framework is a mix of relocated equipment  hardware and programming applications, as well as  numerous innovations. Among them, artificial intelligence  (AI) has a vital role to play. Drought is the greatest serious  threat to agricultural productivity, and its severity is  growing in most farmed regions across the globe. As a  result, the major goal of sustainable agriculture is to  increase water production. In this trial study a savvy  subsurface exactness based on water system framework is  created to accomplish higher precision. In the flow away  and flow research the water system is done dependent on  the information which can ascertain the outcome utilizing  the measurable information. The authors are utilizing AI  calculation to figure the water utilization for the harvest. It  will plan and execute deductively demonstrated, carried  out and tried on field, sharp subsurface water system  framework which is reasonable to utilize less water/battle  dry spell (even not as much as dribble/flood/sprinkler  water system), utilize less power, decrease amount  manures utilized, diminish amount of water utilized for  explicit yield and gather and break down information for  expectation of necessities and spending the executives. 

Downloads

Download data is not yet available.

References

S. J. Kadbhane and V. L. Manekar, “An experimental study of the surface and subsurface irrigation methods with respect to soil moisture on grape yard,” J. Water L. Dev., 2016, doi: 10.1515/jwld-2016-0038.

S. B. Saraf and D. H. Gawali, “IoT based smart irrigation monitoring and controlling system,” 2017, doi: 10.1109/RTEICT.2017.8256711.

A. A. Natividad, J. Timoneda, J. Batlle-Sales, V. Bordas, and A. Murgui, “New Method for MEaduring Dehydrogenase Activity in Soils,” 1997.

A. Gonzales, “ 済 無 No Title No Title No Title,” Molecules, 2019.

A. Maharani, R. Rini, and Sugiman, “Pengaruh Penggunaan Media Interaktif Animasi Terhadap Minat Belajar Matematika Peserta Didik,” Molecules, 2019.

“IoT Based Smart Irrigation Monitoring & Controlling System in Agriculture,” Int. J. Recent Technol. Eng., 2020, doi: 10.35940/ijrte.e6851.038620.

F. Firmanto, “Peranan Pajak Daerah Dalam Meningkatkan Pendapatan Daerah Berdasarkan Undang Undang Nomor 32 Tahun 2004 Tentang Pemerintahan Daerah,” Molecules, 2019.

R. Arieska, “Pembelajaran Seni Baca Al-Qur`An Di Ukm Hiqma Uin Raden Intan Lampung,” Molecules, 2019. [9] I. Sakinah, “Hubungan Status Gizi Dengan Perkembangan Motorik Anak Laki-Laki Usia Prasekolah Di Tk Desa Grobogan Kec. Jiwan Kab. Madiun,” Skripsi. Stikes Bhakti Husada Mulia Madiun, 2019.

B. Abishek, R. Priyatharshini, M. A. Eswar, and P. Deepika, “Prediction of effective rainfall and crop water needs using data mining techniques,” 2018, doi: 10.1109/TIAR.2017.8273722.

Z. Unal, “Smart Farming Becomes even Smarter with Deep Learning - A Bibliographical Analysis,” IEEE Access, 2020, doi: 10.1109/ACCESS.2020.3000175.

V. Ramachandran, R. Ramalakshmi, and S. Srinivasan, “An Automated Irrigation System for Smart Agriculture Using the Internet of Things,” 2018, doi: 10.1109/ICARCV.2018.8581221.

A. Goap, D. Sharma, A. K. Shukla, and C. Rama Krishna, “An IoT based smart irrigation management system using Machine learning and open source technologies,” Comput. Electron. Agric., 2018, doi: 10.1016/j.compag.2018.09.040.

Y. Shekhar, E. Dagur, S. Mishra, R. J. Tom, M. Veeramanikandan, and S. Sankaranarayanan, “Intelligent IoT based automated irrigation system,” Int. J. Appl. Eng. Res., 2017.

A. R. Al-Ali, A. Al Nabulsi, S. Mukhopadhyay, M. S. Awal, S. Fernandes, and K. Ailabouni, “IoT-solar energy powered smart farm irrigation system,” J. Electron. Sci. Technol., 2020, doi: 10.1016/J.JNLEST.2020.100017.

T. U. Rehman, M. S. Mahmud, Y. K. Chang, J. Jin, and

J. Shin, “Current and future applications of statistical machine learning algorithms for agricultural machine vision systems,” Computers and Electronics in Agriculture. 2019, doi: 10.1016/j.compag.2018.12.006.

Downloads

Published

2022-04-30

How to Cite

An Experimental Study of Smart Sub Surface Precision Irrigation System . (2022). International Journal of Innovative Research in Engineering & Management, 9(2), 324–330. Retrieved from https://acspublisher.com/journals/index.php/ijirem/article/view/11064