Recent advances in detection of food allergens

Authors

  • Nikunj Sharma Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India Author
  • Ashutosh Upadhya 1 Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India Author
  • Syed Mansha Rafiq 1 Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India Author

Keywords:

Food allergy, immunology, , immunoglobin, immune system, allergens

Abstract

Food allergy is an immunological reaction caused as a result of exposure of certain proteins or food allergens when administered in adequate  amounts by sensitive people. Eight major food groups causing food allergy consist of cow’s milk, tree nut, fish, soy, peanut, wheat, hen’s egg and crustacean. Food allergens are the proteins that occur naturally in foods which may be responsible for abnormal immune responses.  These allergies are either Immunoglobulin E(IgE)-mediated, non-Immunoglobulin E-mediated, immune complex-mediated or cell-mediated  reactions. A number of detection methods used to identify and quantify the possible proteins responsible for allergenic properties exist which  includes physicochemical methods such as kjeldahl nitrogen assay, colorimetry, electrophoresis, spectrophotometry, mass spectrometry and  polymerase chain reaction methods (real time and conventional) and Immunological methods such as counter electrophoresis,  immunoblotting, immunodiffusion, enzyme-linked immunosorbent assays (ELISAs), enzyme-linked immune spot assays (ELISPOTs) ,  radioimmunoassay to the newer ones i.e. immunodetection methods which include biosensor such as surface plasmon resonance (SPR).This  review summarizes the novel detection methods used to identify and quantify these allergens. 

References

Ahsan, N., Rao, R. S. P., Gruppuso, P. A., Ram, B., and Salomon, A. R. 2016. Targeted proteomics: Current status and future perspectives for quantification of food allergens. Journal of Proteomics, 143, 15-23.

Akkerdaas, J. H., Schocker, F., Vieths, S., Versteeg, S., Zuidmeer, L., Hefle, S. L., Aalberse, R.C., Richter, K., Ferreira F. and van Ree, R. 2006. Cloning of oleosin, a putative new hazelnut allergen, using a hazelnut cDNA library. Molecular Nutrition and Food Research, 50(1), 18–23.

Ashley, J., Piekarska, M., Segers, C., Trinh, L., Rodgers, T., Willey, R., and Tothill, I. E. 2017. An SPR based sensor for allergens detection. Biosensors and Bioelectronics, 88, 109–113.

Ashley, J., Shukor, Y., D’Aurelio, R., Trinh, L., Rodgers, T. L., Temblay, J., Tothill, I. E. 2018. Synthesis of Molecularly Imprinted Polymer Nanoparticles for α-Casein Detection Using Surface Plasmon Resonance as a Milk Allergen Sensor. ACS Sensors, 3(2), 418–424.

Baharuddin M, Khaerunnisa M, Sappewali. 2020. Characterization of the Allergen from Egg White with SDS-PAGE. Science and Technology, 6 (21), 28-32.

Boye, J.I and Godefroy, S.B. 2010. Allergen Management in the food industry, Wiley Publishers, USA.

Carvalho S, Marcelino J, Cabral Duarte M, Costa C, Barbosa M, Pereira Dos Santos MC 2020. Contribution of recombinant Parvalbumin Gad c 1 in the diagnosis and prognosis of fish allergy.Journal of Investigational Allergology and Clinical Immunology,30(5), 1-19.

Cho, C. Y., Ivens, K. O., Nowatzke, W. L., Robotham, J., Samadpour, M., Grace, T., Garber, E. A. E. 2020. Extension of xMAP Food Allergen Detection Assay To Include Sesame. Journal of Food Protection, 83(1), 129–135.

Costa, C., Coimbra, A., Vítor, A., Aguiar, R., Ferreira, A. L., and Todo-Bom, A. 2019. Food allergy – from food avoidance to active treatment. Scandinavian Journal of Immunology, 91(1):e12824. doi: 10.1111/sji.12824.

Courtois, J., Bertholet, C., Tollenaere, S., Van der Brempt, X., Cavalier, E., El Guendi, S. and Quinting, B. 2020. Detection of wheat allergens using 2D Western blot and mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 178, 112907.

Croote, D., Braslavsky, I., and Quake, S. R. 2019. Addressing Complex Matrix Interference Improves Multiplex Food Allergen Detection by Targeted LC–MS/MS. Analytical Chemistry, 91(15):9760-9769.

Eyerich, S., Metz, M., Bossios, A., & Eyerich, K. (2020). New biological treatments for asthma and skin allergies. Allergy, 75(3), 546-560.

Fu, L., Zhou, J., Wang, C., Zhang, Y., Ma, A., and Wang, Y. 2018. Determination of a major allergen in fish samples by simple and effective label-free capillary electrophoretic analysis after background suppression in ion-exchange chromatography. Food Chemistry, 261(September 2017), 124–130.

Galan-Malo, P., Pellicer, S., Pérez, M. D., Sánchez, L., Razquin, P., & Mata, L. (2019). Development of a novel duplex lateral flow test for simultaneous detection of casein and β-lactoglobulin in food. Food Chemistry. doi:10.1016/j.foodchem.2019.04.039

Gavage, M., Van Vlierberghe, K., Van Poucke, C., De Loose, M., Gevaert, K., Dieu, M. and Gillard, N. 2019. High-resolution mass spectrometry-based selection of peanut peptide biomarkers considering food processing and market type variation. Food Chemistry, 125428. doi:10.1016/j.foodchem.2019.125428

Gavage, M., Van Vlierberghe, K., Van Poucke, C., De Loose, M., Gevaert, K., Dieu, M., Gillard, N. (2019). Selection of egg peptide biomarkers in processed food products by high resolution mass spectrometry. Journal of Chromatography. A, 1584, 115–125.

Gomaa, A., and Boye, J. 2015. Simultaneous detection of multi-allergens in an incurred food matrix using ELISA , multiplex flow cytometry and liquid chromatography mass spectrometry ( LC – MS ). Food Chemistry, 175, 585–592.

Guo, X., Jiang, S., Li, X., Yang, S., Cheng, L., Qiu, J., and Che, H. 2020. Sequence analysis of digestion-resistant peptides may be an efficient strategy for studying the linear epitopes of Jug r 1, the major walnut allergen. Food Chemistry, 322, 126711. doi:10.1016/j.foodchem.2020.126711.

He, Z., Dongre, P., Lyu, S., Manohar, M., Chinthrajah, R. S., Galli, S. DeKruyff, R.H., Nadeau, K.C. and Andorf, S. 2020. Identification of cross-reactive allergens in cashew- and pistachio-allergic children during oral immunotherapy. Pediatric Allergy and Immunology. doi:10.1111/pai.13258.

Hicke-Roberts, A., Wennergren, G., & Hesselmar, B. 2020. Late introduction of solids into infants’ diets may increase the risk of food allergy development. BMC PediatriHuang, X., Zhu, Z., Feng, H., Zhang, Q., and Zhang, H. 2020. Simultaneous determination of multi-allergens in surimi products by LC-MS/MS with a stable isotope-labeled peptide. Food Chemistry, 126580. doi:10.1016/j.foodchem.2020.126580.

Jayasena, S., Wijeratne, S. S. K., Taylor, S. L., and Baumert, J. L. 2019. Improved extraction of peanut residues from a wheat flour matrix for immunochemical detection. Food Chemistry, 278(December 2018), 832–840.

Jira, W., and Münch, S. 2018. A sensitive HPLC-MS/MS screening method for the simultaneous detection of barley, maize, oats, rice, rye and wheat proteins in meat products. Food Chemistry. doi:10.1016/j.foodchem.2018.09.041.

Koppelman, S. and Hefle S, 2006. Detecting Allergens in Food. 1st edition, Woodhead Publishing, USA.

Kuehn, A., Swoboda, I., Arumugam, K., Hilger, C., and Hentges, F. 2014. Fish Allergens at a Glance: Variable Allergenicity of Parvalbumins, the Major Fish Allergens. Frontiers in Immunology, 5. doi:10.3389/fimmu.2014.00179.

L. R. Sun, L. Xu, Y. Huang, H. Lin, I. Ahmed and Z. Li. 2019. Identification and Comparison of Allergenicity of Native and Recombinant Fish Major Allergen Parvalbumins from Japanese Flounder (Paralichthys olivaceus).Food and Function. 2-9,

Laborde, A., Jaillais, B., Roger, J.-M., Metz, M., Jouan-Rimbaud Bouveresse, D., Eveleigh, L., and Cordella, C. 2020. Subpixel detection of peanut in wheat flour using a matched subspace detector algorithm and near-infrared hyperspectral imaging. Talanta, 216, 120993.

Lettieri, M., Hosu, O., Adumitrachioaie, A., Cristea, C., and Marrazza, G. 2019. Beta-lactoglobulin Electrochemical Detection Based with an Innovative Platform Based on Composite Polymer. Electroanalysis, 32(2):217-225.

Li, X., Miyakawa, T., Takano, T., Nakajima-Adachi, H., Tanokura, M., and Hachimura, S. 2020. Induction of Oral Tolerance by Pepsin-Digested Gliadin Retaining T Cell Reactivity in a Mouse Model of Wheat Allergy. International Archives of Allergy and Immunology, 1–10. doi:10.1159/000506945.

Linacero, R., Ballesteros, I., Sanchiz, A., Prieto, N., Iniesto, E., Martinez, Y., Cuadrado, C. 2016. Detection By Real Time Pcr Of Walnut Allergen Coding Sequences In Processed Foods. Food Chemistry,202:334-40.

Marzano, V., Tilocca, B., Fiocchi, A. G., Vernocchi, P., Levi Mortera, S., Urbani, A., Putignani, L. 2020. Perusal of food allergens analysis by mass spectrometry-based proteomics. Journal of Proteomics, 215, 103636.

Matsuo, A., Matsushita, K., Fukuzumi, A., Tokumasu, N., Yano, E., Zaima, N., and Moriyama, T. 2020. Comparison of Various Soybean Allergen Levels in Genetically and Non-Genetically Modified Soybeans. Foods, 9(4), 522. doi:10.3390/foods9040522

Mayer, W., Schuller, M., Viehauser, M. C., and Hochegger, R. 2018. Quantification of the allergen soy (Glycine max) in food using digital droplet PCR (ddPCR). European Food Research and Technology. doi:10.1007/s00217-018-3182-5.

Mills, E.N.C., Sancho, A.and Moreno J.2007.The effect of food processing on allergens. In book: Managing allergens in food. Mills C., Wischers H.J., Hoffmann-Somergruber K (Ed). Woodhead Publishing, USA, pp.117-133

Miyazaki, A., Watanabe, S., Ogata, K., Nagatomi, Y., Kokutani, R., Minegishi, Y., Tamehiro, N., Sakai, S., Adachi, R., Hirao, T.

Real-time PCR Detection Methods for Food Allergens (Wheat, Buckwheat, and Peanuts) Using Reference Plasmids. Journal of Agricultural and Food Chemistry. doi:10.1021/acs.jafc.9b01234.

Nardiello, D., Melfi, M. T., Pignatelli, C., and Centonze, D. 2019. Enhancing online protein isolation as intact species from soy flour samples by actively modulated two-dimensional liquid chromatography (2D-LC). Journal of Pharmaceutical and Biomedical Analysis, 112976. doi:10.1016/j.jpba.2019.112976.

Nehra, Lettieri, Dilbaghi, Kumar, and Marrazza. 2019. Nano-Biosensing Platforms for Detection of Cow’s Milk Allergens: An Overview. Sensors, 20(1), 32. DOI: https://doi.org/10.3390/s20010032

Ogura, T., Clifford, R., and Oppermann, U. 2019. Simultaneous Detection of 13 Allergens in Thermally Processed Food Using Targeted LC–MS/MS Approach. Journal of AOAC International, 102(5), 1316–1329.

Ontiveros, N., Gallardo, J. A.-L., Arámburo-Gálvez, J. G., Beltrán-Cárdenas, C. E., Figueroa-Salcido, O. G., Mora-Melgem, J. A., Granda-Restrepo, D.M., Rodríguez-Bellegarrigue, C.I.,Vergara-Jiménez, M.d.J., Cárdenas-Torres, F.I., Gracia Valenzuela, M.H.,Cabrera-Chávez, F. 2020. Characteristics of Allergen Labelling and Precautionary Allergen Labelling in Packaged Food Products Available in Latin America. Nutrients, 12(9), 2698. doi:10.3390/nu12092698

Qi, K., Liu, T., Yang, Y., Zhang, J., Yin, J., Ding, X., Qin, W., Yang, Y. 2019. A rapid immobilized trypsin digestion combined with liquid chromatography – Tandem mass spectrometry for the detection of milk allergens in baked food. Food Control, 102, 179–187.

Sampson, H. A. 2004. Update on food allergy. Journal of Allergy and Clinical Immunology, 113(5), 805–819.

Sanchiz, Á., Ballesteros, I., Martin, A., Rueda, J., Pedrosa, M. M., Dieguez, C., Linacero, R. 2017. Detection of pistachio allergen coding sequences in food products: A comparison of two real time PCR approaches. Food Control, 75,262-270.

Segura-Gil, I., Blázquez-Soro, A., Galán-Malo, P., Mata, L., Tobajas, A. P., Sánchez, L., and Pérez, M. D. 2019. Development of sandwich and competitive ELISA formats to determine β-conglycinin: Evaluation of their performance to detect soy in processed food. Food Control, 103, 78–85.

Segura-Gil, I., Nicolau-Lapeña, I., Galán-Malo, P., Mata, L., Calvo, M., Sánchez, L., and Pérez, M. D. 2018. Development of two ELISA formats to determine glycinin. Application to detect soy in model and commercial processed food. Food Control, 93, 32–39.

Sicherer, S. H., & Sampson, H. A. 2018. Food allergy: A review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. Journal of Allergy and Clinical Immunology, 141(1), 41–58. doi:10.1016/j.jaci.2017.11.003.

Siragakis, G., & Kizis, D. (Eds.). (2013). Food Allergen Testing: Molecular, Immunochemical and Chromatographic Techniques. John Wiley & Sons.

Soon, J. M. (2018). Food allergen labelling: “May contain” evidence from Malaysia. Food Research International, 108 (December 2017), 455–464.

Sun, L., Lin, H., Li, Z., Sun, W., Wang, J. Wu, H., Ge, M., Ahmed, I. and Pavase, T. R. 2019. Development of a method for the

quantification of fish major allergen parvalbumin in food matrix via liquid chromatography-tandem mass spectrometry with multiple reaction monitoring. Food Chemistry, 276, 358–365.

Tsuang, A., Grishin, A., Grishina, G., Do, A. N., Sordillo, J., Chew, G. L., & Bunyavanich, S. 2019. Endotoxin, food allergen sensitization, and food allergy: a complementary epidemiologic and experimental study. Allergy. doi:10.1111/all.14054

Van Vlierberghe, K., Gavage, M., Dieu, M., Renard, P., Arnould, T., Gillard, N., Coudijzer, K., De Loose, M., Gevaert K., Van Poucke, C. 2019. Selection of universal peptide biomarkers for the detection of the allergen hazelnut in food trough a comprehensive, high resolution mass spectrometric (HRMS) based approach. Food Chemistry, 125679. doi:10.1016/j.foodchem.2019.125679.

Varshney, P. and Pongracic, J.A.2020. Clinical manifestations of immunoglobulin E–mediated food allergy, including pollen– food allergy syndrome. Journal of Food Allergy 2:22–25. doi: 10.2500/jfa.2020.2.200002.

Villa, C., Costa, J., Oliveira, M. B. P. P., and Mafra, I. 2018. Bovine milk allergens: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 17(1), 137–164.

Villa, C., Costa, J., Oliveira, M. B. P. P., and Mafra, I. 2019. Cow’s milk allergens: Screening gene markers for the detection of milk ingredients in complex meat products. Food Control, 106823. doi:10.1016/j.foodcont.2019.106823

Wu, X., Li, Y., Liu, B., Feng, Y., He, W., Liu, Z., and Huang, H. 2015. Two-Site Antibody Immunoanalytical Detection of Food Allergens by Surface Plasmon Resonance. Food Analytical Methods, 9(3), 582–588.

Zhao, Y., Sun, X., Marquis, C., and Lee, N. A. 2018. Development of a sensitive sandwich ELISA specific to 2S albumin (Ana o 3), as a stable protein marker for cashew nut residue detection in pre-packaged food products. Food Control, 96,432- 440.

cs, 20(1). doi:10.1186/s12887-020-02158-x.

Published

2020-07-31

How to Cite

Sharma, N., Upadhya, A., & Rafiq, S.M. (2020). Recent advances in detection of food allergens . Journal of Postharvest Technology, 8(3), 22–36. Retrieved from https://acspublisher.com/journals/index.php/jpht/article/view/15328