Application of biosensors in food quality control

Authors

  • Rafeeya Shams Sher-e- Kashmir University of Agricultural Sciences and Technology, Jammu, India Author
  • Jagmohan Singh Sher-e- Kashmir University of Agricultural Sciences and Technology, Jammu, India Author
  • Shafia Ashraf Sher-e- Kashmir University of Agricultural Sciences and Technology, Jammu, India Author
  • Mehnaza Manzoor Sher-e- Kashmir University of Agricultural Sciences and Technology, Jammu, India Author
  • Aamir Hussain Dar Department of Food Technology Islamic University of Science and Technology, Awantipora, Kashmir, India Author

Keywords:

Nanosensor, transducer, food industry, food safety, quality control

Abstract

Food producers gradually demand for effective quality control procedures to satisfy and regulate the requirements of consumer to enhance the  production feasibility, automation, quality sorting and decreases time and cost of production. Also, there is the requirement for rapid and efficient  techniques to identify the allergens and pathogens present in the food product which can be fulfilled by the biosensors. Biosensors have the ability to  overcome all these disadvantages by offering quick, inexpensive as well as non-destructive procedures for quality control and pave way for the quick  identification of allergens, pathogens, and pesticide residues present in food. In this review, the basic principle behind biosensors and the generations  of biosensors have been highlighted. Various biosensor on the basis of technique used such as optical biosensor, potentiometric biosensor,  amperometric biosensor, thermometric biosensor, electrochemical biosensor, piezoelectric biosensor, impedance biosensor, fluorescence label biosensors have been emphasized. In this peculiar review, the various applications of biosensors in food safety, process monitoring, as well as  assessment of quality, including the detection of contaminants, pathogenic microorganisms, determination of antioxidants, heavy metals, quality  evaluation of various fruits and vegetables have been discussed in detail. 

References

Al-Qadiri, H., Sablani, S. S., Ovissipour, M., Al-Alami, N., Govindan, B. and Rasco, B. 2015. Effect of oxygen stress on growth and survival of Clostridium perfringens, Campylobacter jejuni, and Listeria monocytogenes under different storage conditions. Journal of Food Protection, 78(4): 691-697.

Amaro, F., Turkewitz, A. P., Martín-González, A. and Gutiérrez, J. C. 2014. Functional GFP-metallothionein fusion protein from Tetrahymena thermophila: a potential whole-cell biosensor for monitoring heavy metal pollution and a cell model to study metallothionein overproduction effects. Biometals, 27(1): 195-205.

Arora, N. 2013. Recent advances in biosensors technology: a review. Octa Journal of Biosciences, 1(2).

Arugula, M. A. and Simonian, A. 2014. Novel trends in affinity biosensors: current challenges and perspectives. Measurement Science and Technology, 25(3): 032001.

Bathinapatla, A., Kanchi, S., Singh, P., Sabela, M. I. and Bisetty, K. 2016. An ultrasensitive performance enhanced novel cytochrome c biosensor for the detection of rebaudioside A. Biosensors and Bioelectronics, 77: 116-123.

Cañas, A. and Macias, M. 2004. Desarrollo de un sistema sensor para la cuantificación de glucosa en jugos de frutas. Revista de la Sociedad Química de Mexico, 48 (8): 106-110

Castillo, J., Gáspár, S., Sakharov, I. and Csöregi, E. 2003. Bienzyme biosensors for glucose, ethanol and putrescine built on oxidase and sweet potato peroxidase. Biosensors and Bioelectronics, 18(5-6): 705-714.

Du, D., Ding, J., Tao, Y. and Chen, X. 2008. Application of chemisorption/desorption process of thiocholine for pesticide detection based on acetylcholinesterase biosensor. Sensors and Actuators B: Chemical, 134(2): 908-912.

Du, D., Chen, S., Song, D., Li, H. and Chen, X. 2008. Development of acetylcholinesterase biosensor based on CdTe quantum dots/gold nanoparticles modified chitosan microspheres interface. Biosensors and Bioelectronics, 24(3): 475-479.

Eggins, B. R. 2008. Chemical sensors and biosensors (Vol. 28). John Wiley and Sons.

Fritz, J., Cooper, E. B., Gaudet, S., Sorger, P. K. and Manalis, S. R. 2002. Electronic detection of DNA by its intrinsic molecular charge. Proceedings of the National Academy of Sciences, 99(22): 14142-14146.

Gammoudi, I., Tarbague, H., Othmane, A., Moynet, D., Rebière, D., Kalfat, R. and Dejous, C. 2010. Love-wave bacteria-based sensor for the detection of heavy metal toxicity in liquid medium. Biosensors and Bioelectronics, 26(4): 1723-1726.

Gan, T., Lv, Z., Liu, N., Sun, J., Shi, Z. and Zhao, A. 2016. Ultrasensitive Electrochemical Sensor for Maltol in Wines Using Graphene Oxide-Wrapped Amino-Functionalized Carbon Sphere as Sensing Electrode Materials. Electroanalysis, 28(1): 103-110.

Gan, T., Sun, J., Wu, Q., Jing, Q. and Yu, S. 2013. Graphene decorated with nickel nanoparticles as a sensitive substrate for simultaneous determination of sunset yellow and tartrazine in food samples. Electroanalysis, 25(6): 1505- 1512.

Geim, A. K. and Novoselov, K. S. 2010. The rise of graphene. In Nanoscience and Technology: A Collection of Reviews from Nature Journals, 11-19.

Giese, J. H. 2002. Food Biosensors Laboratory. Food Technology-Champaign Then Chicago, 56(7): 72-75.

Glaser, R. W. 2000. Surface plasmon resonance biosensors. In Biosensors and their Applications (pp. 195-212). Springer, Boston, MA.

Gol'dfarb, O.E. 2005. Extended Abstract of Cand. Sci. (Chem.) Dissertation, Kazan: Kazan State University.

Huang, L., Hou, K., Jia, X., Pan, H. and Du, M. 2014. Preparation of novel silver nanoplates/graphene composite and their application in vanillin electrochemical detection. Materials Science and Engineering: C, 38: 39-45.

Inbaraj, B. S. and Chen, B. H. 2016. Nanomaterial-based sensors for detection of foodborne bacterial pathogens and toxins as well as pork adulteration in meat products. Journal of Food and Drug Analysis, 24(1): 15-28.

International Union of Pure and Applied Chemistry (IUPAC), USA. 2000.

Kellner, R., Mermet, J. M., Otto, M., Valcarcel, M., & Widmer, H. M. 2004. Analytical chemistry: a modern approach to analytical science, 632-653. Weinheim: Wiley-Vch.

Kim, M., Lim, J. W., Kim, H. J., Lee, S. K., Lee, S. J., & Kim, T. 2015. Chemostat-like microfluidic platform for highly sensitive detection of heavy metal ions using microbial biosensors. Biosensors and Bioelectronics, 65: 257-264.

Kong, J., Franklin, N. R., Zhou, C., Chapline, M. G., Peng, S., Cho, K. and Dai, H. 2000. Nanotube molecular wires as chemical sensors. Science, 287 (5453): 622-625.

Korotkaya, E. V. 2014. Biosensors: Design, classification, and applications in the food industry. Foods and Raw Materials, 2(2).

Koval'chuk, M.V., Klechkovskaya, V.V. and Feigin, L.A. 2003. Priroda (Nature). 12: 1–12.

Krishnamurthy, V., Monfared, S. M. and Cornell, B. 2010. Ion-channel biosensors—part I: construction, operation, and clinical studies. IEEE Transactions on Nanotechnology, 9(3): 303-312.

Kuhnert, P., Boerlin, P. and Frey, J. 2000. Target genes for virulence assessment of Escherichia coli isolates from water, food and the environment. FEMS Microbiology Reviews, 24(1): 107-117.

Leonard, P., Hearty, S., Brennan, J., Dunne, L., Quinn, J., Chakraborty, T. and O’Kennedy, R. 2003. Advances in biosensors for detection of pathogens in food and water. Enzyme and Microbial Technology, 32(1): 3-13.

Li, Y., Fang, L., Cheng, P., Deng, J., Jiang, L., Huang, H. and Zheng, J. 2013. An electrochemical immunosensor for sensitive detection of Escherichia coli O157: H7 using C60 based biocompatible platform and enzyme functionalized Pt nanochains tracing tag. Biosensors and Bioelectronics, 49: 485-491.

Li, Y., Afrasiabi, R., Fathi, F., Wang, N., Xiang, C., Love, R., She, Z. and Kraatz, H. B. 2014. Impedance based detection of pathogenic E. coli O157: H7 using a ferrocene-antimicrobial peptide modified biosensor. Biosensors and Bioelectronics, 58: 193-199.

Liu, F. and Zhang, C. 2015. A novel paper-based microfluidic enhanced chemiluminescence biosensor for facile, reliable and highly-sensitive gene detection of Listeria monocytogenes. Sensors and Actuators B: Chemical, 209: 399-406.

Liu, J., Chen, Y., Wang, W., Feng, J., Liang, M., Ma, S. and Chen, X. 2016. “Switch-on” fluorescent sensing of ascorbic acid in food samples based on carbon quantum dots–MnO2 probe. Journal of Agricultural and Food Chemistry, 64(1): 371- 380.

Long, F., Zhu, A., Shi, H., Wang, H. and Liu, J. 2013. Rapid on-site/in-situ detection of heavy metal ions in environmental water using a structure-switching DNA optical biosensor. Scientific Reports, 3(1): 1-7.

Lozano, M. G., García, Y. P., Gonzalez, J. A. S., Bañuelos, C. V. O., Escareño, M. P. L. and Balagurusamy, N. 2019. Biosensors for Food Quality and Safety Monitoring: Fundamentals and Applications. In Enzymes in Food Biotechnology, 691-709. Academic Press.

Lv, M., Liu, Y., Geng, J., Kou, X., Xin, Z. and Yang, D. 2018. Engineering nanomaterials-based biosensors for food safety detection. Biosensors and Bioelectronics, 106: 122-128.

Ma, X., Jiang, Y., Jia, F., Yu, Y., Chen, J. and Wang, Z. 2014. An aptamer-based electrochemical biosensor for the detection of Salmonella. Journal of microbiological methods, 98: 94-98.

Manikas, I. 2002. Evaluation of the Operational Peformance of Fresh Produce Distribution Centres in the UK (Doctoral dissertation, Cranfield University at Silsoe).

Mello, L. D. and Kubota, L. T. 2002. Review of the use of biosensors as analytical tools in the food and drink industries. Food Chemistry, 77(2): 237-256.

Meshram, B.D., Agrawal, A.K., Adil, S., Ranvir S. and Sande, K.K. 2018. Biosensor and its Application in Food and Dairy Industry: A Review. International Journal of Current Microbiology and Applied Sciences, 7(2): 3305-3324.

Narsaiah, K., Jha, S. N., Bhardwaj, R., Sharma, R. and Kumar, R. 2012. Optical biosensors for food quality and safety assurance—a review. Journal of Food Science and Technology, 49(4): 383-406.

O'Connell, P. J., O'Sullivan, C. K. and Guilbault, G. G. 2000. Biosensors for food analysis. Irish Journal of Agricultural and Food Research, 321-329.

Patolsky, F., Zheng, G., Hayden, O., Lakadamyali, M., Zhuang, X. and Lieber, C. M. 2004. Electrical detection of single viruses. Proceedings of the National Academy of Sciences, 101(39): 14017-14022.

Patra, J. K., Mahato, D. K. and Kumar, P. 2019. Biosensor Technology—Advanced Scientific Tools, With Special Reference to Nanobiosensors and Plant-and Food-Based Biosensors. In Nanomaterials in Plants, Algae and Microorganisms, 287-303. Academic Press.

Pellegrino, T., Kudera, S., Liedl, T., Muñoz Javier, A., Manna, L. and Parak, W. J. 2005. On the development of colloidal nanoparticles towards multifunctional structures and their possible use for biological applications. Small, 1(1): 48-63.

Pérez-López, B. and Merkoçi, A. 2011. Nanomaterials based biosensors for food analysis applications. Trends in Food Science and Technology, 22(11): 625-639.

Rahman, M. S. 2007. Handbook of food preservation. (2nd Ed.). CRC press.

Rajapaksha, P., Elbourne, A., Gangadoo, S., Brown, R., Cozzolino, D. and Chapman, J. 2019. A review of methods for the detection of pathogenic microorganisms. Analyst, 144(2): 396-411.

Rocha-Gaso, M. I., March-Iborra, C., Montoya-Baides, Á. and Arnau-Vives, A. 2009. Surface generated acoustic wave biosensors for the detection of pathogens: A review. Sensors, 9(7): 5740-5769.

Romanov, V. O., Galelyuka, I. P., Glushkov, V. M., Starodub, N. F. and Son‘ko, R. V. 2011. P7-Optical Immune Biosensor Based on SPR for the Detection of Salmonella Typhimurium. Proceedings OPTO, 139-144.

Rotariu, L., Lagarde, F., Jaffrezic-Renault, N. and Bala, C. 2016. Electrochemical biosensors for fast detection of food contaminants–trends and perspective. TrAC Trends in Analytical Chemistry, 79: 80-87.

Rustagi, S. and Kumar, P. 2013. Biosensor and It’s application in food industry. Advances in Bioresearch, 4(2): 168-170. Schramm, L. L. 2008. Dictionary of Nanotechnology, Colloid and Interface Science. Wiley-VCH.

Shanehsaz, M., Mohsenifar, A., Hasannia, S., Pirooznia, N., Samaei, Y. and Shamsipur, M. 2013. Detection of Helicobacter pylori with a nanobiosensor based on fluorescence resonance energy transfer using CdTe quantum dots. Microchimica Acta, 180(3-4): 195-202.

Shlyapnikov, Y.M. 2010. Extended Abstract of Cand. Sci (Chem.) Dissertation, Moscow: Moscow State University.

Singh, A., Verma, H. N. and Arora, K. 2015. Surface plasmon resonance based label-free detection of Salmonella using DNA self-assembly. Applied Biochemistry and Biotechnology, 175(3): 1330-1343.

Singh, C., Srivastava, S., Ali, M. A., Gupta, T. K., Sumana, G., Srivastava, A., Mathur, R. and Malhotra, B. D. 2013. Carboxylated multiwalled carbon nanotubes based biosensor for aflatoxin detection. Sensors and Actuators B: Chemical, 185: 258-264.

Smyth, A. B., Talasila, P. C. and Cameron, A. C. 1999. An ethanol biosensor can detect low-oxygen injury in modified atmosphere packages of fresh-cut produce. Postharvest Biology and Technology, 15(2): 127-134.

Tainaka, K., Sakaguchi, R., Hayashi, H., Nakano, S., Liew, F. F. and Morii, T. 2010. Design strategies of fluorescent biosensors based on biological macromolecular receptors. Sensors, 10(2): 1355-1376.

Tang, B., Cao, L., Xu, K., Zhuo, L., Ge, J., Li, Q. and Yu, L. 2008. A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance energy transfer (FRET) between CdTe quantum dots and Au nanoparticles. Chemistry–A European Journal, 14(12): 3637-3644.

Tawil, N., Sacher, E., Mandeville, R. and Meunier, M. 2012. Surface plasmon resonance detection of E. coli and methicillin resistant S. aureus using bacteriophages. Biosensors and Bioelectronics, 37(1): 24-29.

Terry, L. A., White, S. F. and Tigwell, L. J. 2005. The application of biosensors to fresh produce and the wider food industry. Journal of Agricultural and Food Chemistry, 53(5): 1309-1316.

Thakur, M. S. and Ragavan, K. V. 2013. Biosensors in food processing. Journal of Food Science and Technology, 50(4): 625- 641.

Tolba, M., Ahmed, M. U., Tlili, C., Eichenseher, F., Loessner, M. J. and Zourob, M. 2012. A bacteriophage endolysin-based electrochemical impedance biosensor for the rapid detection of Listeria cells. Analyst, 137(24): 5749-5756.

Tothill, I. E. 2001. Biosensors developments and potential applications in the agricultural diagnosis sector. Computers and Electronics in Agriculture, 30(1-3): 205-218.

Tsai, H. C., Doong, R. A., Chiang, H. C. and Chen, K. T. 2003. Sol–gel derived urease-based optical biosensor for the rapid determination of heavy metals. Analytica Chimica Acta, 481(1): 75-84.

Vaisocherová-Lísalová, H., Víšová, I., Ermini, M. L., Špringer, T., Song, X. C., Mrázek, J., Lamačová, J., Lynn, N. S., Šedivák, P. and Homola, J. 2016. Low-fouling surface plasmon resonance biosensor for multi-step detection of foodborne bacterial pathogens in complex food samples. Biosensors and Bioelectronics, 80: 84-90.

Varelas, V., Sanvicens, N. and Kintzios, S. 2011. Development of a cellular biosensor for the detection of 2, 4, 6- trichloroanisole (TCA). Talanta, 84(3): 936-940.

Velasco-Garcia, M. N. and Mottram, T. 2003. Biosensor technology addressing agricultural problems. Biosystems Engineering, 84(1): 1-12.

Velusamy, V., Arshak, K., Korostynska, O., Oliwa, K. and Adley, C. 2010. An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnology Advances, 28(2): 232-254.

Vilian, A. E., Chen, S. M., Chen, Y. H., Ali, M. A. and Al-Hemaid, F. M. 2014. An electrocatalytic oxidation and voltammetric method using a chemically reduced graphene oxide film for the determination of caffeic acid. Journal of Colloid and Interface Science, 423: 33-40.

Villalonga, M. L., Borisova, B., Arenas, C. B., Villalonga, A., Arevalo-Villena, M., Sanchez, A., Pingarrón, J.M., Briones-Perez, A. and Villalonga, R. 2019. Disposable electrochemical biosensors for Brettanomyces bruxellensis and total yeast content in wine based on core-shell magnetic nanoparticles. Sensors and Actuators B: Chemical, 279: 15-21.

Wanekaya, A. K., Chen, W., Myung, N. V. and Mulchandani, A. 2006. Nanowire-based electrochemical biosensors. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 18(6): 533-550.

Wang, B., Chen, Y., Wu, Y., Weng, B., Liu, Y., Lu, Z., Li, C.M. andYu, C. 2016. Aptamer induced assembly of fluorescent nitrogen-doped carbon dots on gold nanoparticles for sensitive detection of AFB1. Biosensors and Bioelectronics, 78: 23-30.

Wang, J., Musameh, M. and Lin, Y. 2003. Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. Journal of the American Chemical Society, 125(9): 2408-2409.

Wang, W. U., Chen, C., Lin, K. H., Fang, Y. and Lieber, C. M. 2005. Label-free detection of small-molecule–protein interactions by using nanowire nanosensors. Proceedings of the National Academy of Sciences, 102(9): 3208-3212.

Wang, X., Chen, Y., Gibney, K. A., Erramilli, S. and Mohanty, P. 2008. Silicon-based nanochannel glucose sensor. Applied Physics Letters, 92(1): 013903.

Wang, Y. and Duncan, T. V. 2017. Nanoscale sensors for assuring the safety of food products. Current Opinion in Biotechnology, 44: 74-86.

Xu, Y., Niu, X., Zhang, H., Xu, L., Zhao, S., Chen, H. and Chen, X. 2015. Switch-on fluorescence sensing of glutathione in food samples based on a graphitic carbon nitride quantum dot (g-CNQD)–Hg2+ chemosensor. Journal of agricultural and food chemistry, 63(6): 1747-1755.

Yan, H., Tang, N., Jairo, G. A., Chakravarty, S., Blake, D. A. and Chen, R. T. 2016. High-sensitivity high-throughput chip based biosensor array for multiplexed detection of heavy metals. In Frontiers in Biological Detection: From Nanosensors to Systems VIII (Vol. 9725, p. 972507). International Society for Optics and Photonics.

Zhai, H., Liang, Z., Chen, Z., Wang, H., Liu, Z., Su, Z. and Zhou, Q. 2015. Simultaneous detection of metronidazole and chloramphenicol by differential pulse stripping voltammetry using a silver nanoparticles/sulfonate functionalized graphene modified glassy carbon electrode. Electrochimica Acta, 171: 105-113.

Zhang, Y., Liu, Y., He, J., Pang, P., Gao, Y. and Hu, Q. 2013. Electrochemical behavior of caffeic acid assayed with gold nanoparticles/graphene nanosheets modified glassy carbon electrode. Electroanalysis, 25(5): 1230-1236.

Zhang, G. J. and Ning, Y. 2012. Silicon nanowire biosensor and its applications in disease diagnostics: a review. Analytica Chimica Acta, 749: 1-15.

Zhang, X., Wu, D., Zhou, X., Yu, Y., Liu, J., Hu, N. and Wu, Y. 2019. Recent progress in the construction of nanozyme-based biosensors and their applications to food safety assay. TrAC Trends in Analytical Chemistry, 121: 115668.

Zheng, G., Patolsky, F., Cui, Y., Wang, W. U. and Lieber, C. M. 2005. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature biotechnology, 23(10): 1294-1301.

Zhou, Y., Sharma, S. K., Peng, Z. and Leblanc, R. M. 2017. Polymers in carbon dots: a review. Polymers, 9(2): 67.

Published

2020-02-25

How to Cite

Shams, R., Singh, J., Ashraf, S., Manzoor, M., & Dar, A.H. (2020). Application of biosensors in food quality control . Journal of Postharvest Technology, 8(1), 53–74. Retrieved from https://acspublisher.com/journals/index.php/jpht/article/view/15315