Effect of processing on bioactive compounds of Mandarin and blood orange: a review
Keywords:
Mandarin fruit, blood orange, citrus fruit, bioactive compoundsAbstract
Citrus fruits are a rich source of compounds that influence the sensorial acceptance of juices and other value-added products prepared from it, such as organic acids, phenols and sugars. The strong antioxidant properties are influenced by the presence of bioactive compounds such as flavonoids, phenolic acids, limonoids and adrenergic amines where benzoic and hydroxycinnamic acids form a major part of phenolic compounds while Naringin, Neohesperidin, Narirutin and Hesperidin are present in major quantities. These compounds play an important role in human metabolism through their health-promoting benefits. Given this background, while this review paper acknowledges the research works carried out in this field, it highlights the changes in the bioactive compounds of mandarin and blood oranges when they undergo various processing methods and technologies and at the same time encourages more and rigorous studies especially in the line of blood oranges. It is also worth mentioning here that although the value added products of mandarin and blood oranges exist in the market, yet, scientific research works to determine the optimized process, formulations or venturing technologies for improved processing is scarce.
References
Akdaş, S., and Başlar, M. (2015). Dehydration and Degradation Kinetics of Bioactive Compounds for Mandarin Slices Under Vacuum and Oven Drying Conditions. Journal of Food Processing and Preservation, 39(6), 1098–1107. https://doi.org/10.1111/jfpp.12324
Alam, M. S., Kaur, M., and Ramya, H. G. (2017). Mass Transfer Kinetics for Osmotic Dehydration of Kinnow Fruit in Sugar Solution. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences.
Bang, I. H., Lee, E. S., Lee, H. S., and Min, S. C. (2020). Microbial decontamination system combining antimicrobial solution washing and atmospheric dielectric barrier discharge cold plasma treatment for preservation of mandarins. Postharvest Biology and Technology, 162 (September 2019), 111102. https://doi.org/10.1016/j.postharvbio.2019.111102
Barboni, T., Muselli, A., Luro, F., Desjobert, J. M., and Costa, J. (2010). Influence of processing steps and fruit maturity on volatile concentrations in juices from clementine, mandarin, and their hybrids. European Food Research and Technology, 231(3), 379–386. https://doi.org/10.1007/s00217-010-1283-x
Baswal, A. K., Dhaliwal, H. S., Singh, Z., Mahajan, B. V. C., Kalia, A., and S Gill, K. (2020). Influence of carboxy methylcellulose, chitosan and beeswax coatings on cold storage life and quality of Kinnow mandarin fruit. Scientia Horticulturae, 260(July 2019), 108887. https://doi.org/10.1016/j.scienta.2019.108887
Betoret, E., Mannozzi, C., Dellarosa, N., Laghi, L., Rocculi, P., and Dalla Rosa, M. (2017). Metabolomic studies after high pressure homogenization processed low pulp mandarin juice with trehalose addition. Functional and technological properties. Journal of Food Engineering, 200, 22–28. https://doi.org/10.1016/j.jfoodeng.2016.12.011
Cao, Shao qian, Liu, L., and Pan, S. yi. (2011). Thermal degradation kinetics of anthocyanins and visual color of blood orange juice. Agricultural Sciences in China, 10(12), 1992–1997. https://doi.org/10.1016/S1671-2927(11)60201-0
Cao, Shaoqian, Liu, L., Lu, Q., Xu, Y., Pan, S., and Wang, K. (2009). Integrated effects of ascorbic acid, flavonoids and sugars on thermal degradation of anthocyanins in blood orange juice. European Food Research and Technology, 228(6), 975–983. https://doi.org/10.1007/s00217-009-1015-2
Carmona, L., Alquézar, B., Marques, V. V., and Peña, L. (2017). Anthocyanin biosynthesis and accumulation in blood oranges during postharvest storage at different low temperatures. Food Chemistry, 237, 7–14. https://doi.org/10.1016/j.foodchem.2017.05.076
Cassano, A., Tasselli, F., Conidi, C., and Drioli, E. (2009). Ultrafiltration of Clementine mandarin juice by hollow fibre membranes. Desalination, 241(1–3), 302–308. https://doi.org/10.1016/j.desal.2007.10.102
Cebadera-Miranda, L., Domínguez, L., Dias, M. I., Barros, L., Ferreira, I. C. F. R., Igual, M., Martínez-Navarrete, N., Fernández-Ruiz, V., Morales, P., and Cámara, M. (2019). Sanguinello and Tarocco (Citrus sinensis [L.] Osbeck): Bioactive compounds and colour appearance of blood oranges. Food Chemistry, 270(May 2018), 395– 402. https://doi.org/10.1016/j.foodchem.2018.07.094
Chen, Chu-Ying, Zheng, Jia-Peng, Wan, Chun-Peng, Chen, Ming and Chen, Jin-Yin (2016). Effect of Carboxymethyl Cellulose Coating Enriched With Clove Oil on Postharvest Quality of ‘Xinyu’ Mandarin Oranges. Fruits 2016, 71, 319–327.
Codoñer-Franch,P., López-Jaén, A. B., Muñiz, P., Sentandreu, E., and Bellés, V. V. (2008). Mandarin Juice Improves the Antioxidant Status of Hypercholesterolemic Children. Journal of Pediatric Gastroenterology and Nutrition, 47(3), 349–355.
De Ancos, B., Cilla, A., Barberá, R., Sánchez-Moreno, C., and Cano, M. P. (2017). Influence of orange cultivar and mandarin postharvest storage on polyphenols, ascorbic acid and antioxidant activity during gastrointestinal digestion. Food Chemistry, 225, 114–124. https://doi.org/10.1016/j.foodchem.2016.12.098
Fabroni, S., Amenta, M., Timpanaro, N., and Rapisarda, P. (2010). Supercritical carbon dioxide-treated blood orange juice as a new product in the fresh fruit juice market. Innovative Food Science and Emerging Technologies, 11(3), 477– 484. https://doi.org/10.1016/j.ifset.2010.02.004
Fabroni, S., Amenta, M., Timpanaro, N., Todaro, A., and Rapisarda, P. (2020). Change in taste-altering non-volatile components of blood and common orange fruit during cold storage. Food Research International, 131, 108916. https://doi.org/10.1016/j.foodres.2019.108916
Fallico, B., Ballistreri, G., Arena, E., Brighina, S., and Rapisarda, P. (2017). Bioactive compounds in blood oranges (Citrus
sinensis (L.) Osbeck): Level and intake. Food Chemistry, 215, 67–75. https://doi.org/10.1016/j.foodchem.2016.07.142
Galaverna, G., Di Silvestro, G., Cassano, A., Sforza, S., Dossena, A., Drioli, E., and Marchelli, R. (2008). A new integrated membrane process for the production of concentrated blood orange juice: Effect on bioactive compounds and antioxidant activity. Food Chemistry, 106(3), 1021–1030. https://doi.org/10.1016/j.foodchem.2007.07.018
Gulati, A., Rawat, R., Singh, B., and Ravindranath, S. D. (2003). Application of microwave energy in the manufacture of enhanced-quality green tea. Journal of Agricultural and Food Chemistry, 51(16), 4764–4768. https://doi.org/10.1021/jf026227q
Haider, S. T. A., Ahmad, S., Sattar Khan, A., Anjum, M. A., Nasir, M., and Naz, S. (2020). Effects of salicylic acid on postharvest fruit quality of “Kinnow” mandarin under cold storage. Scientia Horticulturae, 259(July 2019). https://doi.org/10.1016/j.scienta.2019.108843
Hayat, K., Zhang, X., Farooq, U., Abbas, S., Xia, S., Jia, C., Zhong, F., and Zhang, J. (2010). Effect of microwave treatment on phenolic content and antioxidant activity of citrus mandarin pomace. Food Chemistry, 123(2), 423–429. https://doi.org/10.1016/j.foodchem.2010.04.060
Hong, S. I., Lee, H. H., and Kim, D. (2007). Effects of hot water treatment on the storage stability of satsuma mandarin as a postharvest decay control. Postharvest Biology and Technology, 43(2), 271–279. https://doi.org/10.1016/j.postharvbio.2006.09.008
Ilame, S. A., and Singh, S. V. (2018). Physico-chemical properties of ultrafiltered kinnow (mandarin) fruit juice. Journal of Food Science and Technology, 55(6), 2189–2196. https://doi.org/10.1007/s13197-018-3136-8
Ingallinera, B., Barbagallo, R. N., Spagna, G., Palmeri, R., and Todaro, A. (2005). Effects of thermal treatments on pectinesterase activity determined in blood oranges juices. Enzyme and Microbial Technology, 36(2–3), 258– 263. https://doi.org/10.1016/j.enzmictec.2004.08.041
Jo, Y., Nam, H. A., Ramakrishnan, S. R., Baek, M. E., Lim, S. Bin, and Kwon, J. H. (2018). Postharvest irradiation as a quarantine treatment and its effects on the physicochemical and sensory qualities of Korean citrus fruits. Scientia Horticulturae, 236(September 2017), 265–271. https://doi.org/10.1016/j.scienta.2017.12.029
Kadam, D. M., Rai, D. R., Patil, R. T., Wilson, R. A., Kaur, S., and Kumar, R. (2011). Quality of fresh and stored foam mat dried Mandarin powder. International Journal of Food Science and Technology, 46(4), 793–799. https://doi.org/10.1111/j.1365-2621.2011.02559.x
Kelebek, H., and Selli, S. (2011). Identification of phenolic compositions and the antioxidant capacity of mandarin juices and wines. Journal of Food Science and Technology, 51(6), 1094–1101.
Kirca, A., and Cemeroǧlu, B. (2003). Degradation kinetics of anthocyanins in blood orange juice and concentrate. Food Chemistry, 81(4), 583–587. https://doi.org/10.1016/S0308-8146(02)00500-9
Lee, K.-C., Yoon, Y. S., Li, F.-Z., and Eun, J.-B. (2016). Effects of inlet air temperature and concentration of carrier agents on physicochemical properties, sensory evaluation of spray-dried mandarin (Citrus unshiu) beverage powder. Applied Biological Chemistry, 60(1), 33–40.
Legua, P., Forner, J. B., Hernández, F., and Forner-Giner, M. A. (2014). Total phenolics, organic acids, sugars and antioxidant activity of mandarin (Citrus clementina Hort. ex Tan.): Variation from rootstock. Scientia Horticulturae, 174(1), 60–64. https://doi.org/10.1016/j.scienta.2014.05.004
Licciardello, F., and Muratore, G. (2011). Effect of Temperature and Some Added Compounds on the Stability of Blood Orange Marmalade. Journal of Food Science, 76(7), C1094–C1100. doi:10.1111/j.1750-3841.2011.02335.x
Lim, S., Yagiz, Y., and Balaban, M. O. (2006). Continuous High Pressure Carbon Dioxide Processing of Mandarin Juice. Food Science and Biotechnology,15, 13–18.
Lo Scalzo, R., Iannoccari, T., Summa, C., Morelli, R., and Rapisarda, P. (2004). Effect of thermal treatments on antioxidant and antiradical activity of blood orange juice. Food Chemistry, 85(1), 41–47. https://doi.org/10.1016/j.foodchem.2003.05.005
Lodh, S. B., De, S., Mukherjee, S. K., and Bose, A. N. (1962). Storage of Mandarin Oranges II. Effects of Hormones and Wax Coatings. J. Food ScL, 28, 519.
Maccarone, E., Maccarrone, A., and Rapisarda, P. (1985). Stabilization of Anthocyanins of Blood Orange Fruit Juice. Journal of Food Science, 50(4), 901–904. https://doi.org/10.1111/j.1365-2621.1985.tb12976.x
Mahrouz, M., Lacroix, M., D’Aprano, G., Oufedjikh, H., Boubekri, C., and Gagnon, M. (2002). Effect of γ-irradiation combined with washing and waxing treatment on physicochemical properties, vitamin C, and organoleptic quality of citrus clementina Hort. Ex. Tanaka. Journal of Agricultural and Food Chemistry, 50(25), 7271–7276. https://doi.org/10.1021/jf0116909
Moulehi, I., Bourgou, S., Ourghemmi, I., and Tounsi, M. S. (2012). Variety and ripening impact on phenolic composition and antioxidant activity of mandarin (Citrus reticulate Blanco) and bitter orange (Citrus aurantium L.) seeds extracts. Industrial Crops and Products, 39(1), 74–80. https://doi.org/10.1016/j.indcrop.2012.02.013
Nam, H. A., Ramakrishnan, S. R., and Kwon, J. H. (2019). Effects of electron-beam irradiation on the quality characteristics of mandarin oranges (Citrus unshiu (Swingle) Marcov) during storage. Food Chemistry, 286(February), 338–345. https://doi.org/10.1016/j.foodchem.2019.02.009
Navarro, P., Pérez-López, A. J., Mercader, M. T., Carbonell-Barrachina, A. A., and Gabaldon, J. A. (2011). Antioxidant Activity, Color, Carotenoids Composition, Minerals, Vitamin C and Sensory Quality of Organic and Conventional Mandarin Juice, cv. Orogrande. Food Science and Technology International, 17(3), 241–248.
Oey, I., Van der Plancken, I., Van Loey, A., and Hendrickx, M. (2008). Does high pressure processing influence nutritional aspects of plant based food systems? Trends in Food Science and Technology, 19(6), 300–308. https://doi.org/10.1016/j.tifs.2007.09.002
Ogawa, H., Fukuhisa, K., Kubo, Y., and Fukumoto, H. (1990). Pressure Inactivation of Yeasts, Molds, and Pectinesterase in Satsuma Mandarin Juice: Effects of Juice Concentration, pH, and Organic Acids, and Comparison with Heat Sanitation. Agricultural and Biological Chemistry, 54(5), 1219–1225.
Pannitteri, C., Continella, A., Lo Cicero, L., Gentile, A., La Malfa, S., Sperlinga, E., Napoli, E. M., Strano, T., Ruberto, G., and Siracusa, L. (2017). Influence of postharvest treatments on qualitative and chemical parameters of Tarocco blood orange fruits to be used for fresh chilled juice. Food Chemistry, 230, 441–447. https://doi.org/10.1016/j.foodchem.2017.03.041
Pareek, S., Paliwal, R., and Mukherjee, S. (2011). Effect of juice extraction methods and processing temperature-time on juice quality of Nagpur mandarin (Citrus reticulata Blanco) during storage. Journal of Food Science and Technology, 48(2), 197–203. https://doi.org/10.1007/s13197-010-0154-6
Perez-Lopez, A. J. (2010). Quality of Canned mandarin as affected by preservation liquid. Ciência e Tecnologia de Alimentos, 30(4), 1105–1113. https://doi.org/10.1590/s0101-20612010000400041
Pérez, A. G., Luaces, P., Oliva, J., Ríos, J. J., and Sanz, C. (2005). Changes in vitamin C and flavour components of mandarin juice due to curing of fruits. Food Chemistry, 91(1), 19–24. https://doi.org/10.1016/j.foodchem.2004.05.041
Plaza, P., Sanbruno, A., Usall, J., Lamarca, N., Torres, R., Pons, J., and Viñas, I. (2004). Integration of curing treatments with degreening to control the main postharvest diseases of clementine mandarins. Postharvest Biology and Technology, 34(1), 29–37. https://doi.org/10.1016/j.postharvbio.2004.03.012
Putnik, P., Lorenzo, J. M., Barba, F. J., Roohinejad, S., Jambrak, A. R., Granato, D., Montesano, D., and Kovačević, D. B. (2018). Novel food processing and extraction technologies of high-added value compounds from plant materials. Foods, 7(7), 1–16. https://doi.org/10.3390/foods7070106
Remini, H., Mertz, C., Belbahi, A., Achir, N., Dornier, M., and Madani, K. (2015). Degradation kinetic modelling of ascorbic acid and colour intensity in pasteurised blood orange juice during storage. Food Chemistry, 173, 665– 673. doi:10.1016/j.foodchem.2014.10.069
Rojas-Argudo, C., Palou, L., Bermejo, A., Cano, A., del Río, M. A., and Carmen González-Mas, M. (2012). Effect of X-ray irradiation on nutritional and antifungal bioactive compounds of “Clemenules” clementine mandarins. Postharvest Biology and Technology, 68, 47–53. https://doi.org/10.1016/j.postharvbio.2012.02.004
Rubio-Arraez, S., Capella, J. V., Castelló, M. L., and Ortolá, M. D. (2016). Physicochemical characteristics of citrus jelly with non cariogenic and functional sweeteners. Journal of Food Science and Technology, 53(10), 3642– 3650. doi:10.1007/s13197-016-2319-4
Scordino, M., Sabatino, L., Lazzaro, F., Borzì, M., Gargano, M., Traulo, P., and Gagliano, G. (2015). Blood Orange Anthocyanins in Fruit Beverages: How the Commercial Shelf Life Reflects the Quality Parameter. Beverages, 1(2), 82–94. https://doi.org/10.3390/beverages1020082
Sdiri, S., Bermejo, A., Aleza, P., Navarro, P., and Salvador, A. (2012). Phenolic composition, organic acids, sugars, vitamin C and antioxidant activity in the juice of two new triploid late-season mandarins. Food Research International,
(1), 462–468. https://doi.org/10.1016/j.foodres.2012.07.040
Selli, S., Kürkçüoğlu, M., Kafkas, E., Cabaroglu, T., Demirci, B., Başer, K. H. C., and Canbas, A. (2004). Volatile flavour components of mandarin wine obtained from clementines (Citrus reticula Blanco) extracted by solid-phase microextraction. Flavour and Fragrance Journal, 19(5), 413–416.
Selli, S. (2007). Volatile Constituents Of Orange Wine Obtained From Moro Oranges (Citrus Sinensis [L.] Osbeck). Journal Of Food Quality, 30(3), 330–341. Doi:10.1111/J.1745-4557.2007.00124.X
Sentandreu, E., Stinco, C. M., Vicario, I. M., Mapelli-Brahm, P., Navarro, J. L., and Meléndez-Martínez, A. J. (2020). High pressure homogenization as compared to pasteurization as a sustainable approach to obtain mandarin juices with improved bioaccessibility of carotenoids and flavonoids. Journal of Cleaner Production, 262, 121325. https://doi.org/10.1016/j.jclepro.2020.121325
Shah, S. W. A., Jahangir, M., Qaisar, M., Khan, S. A., Mahmood, T., Saeed, M., Farid, A., and Liaquat, M. (2015). Storage stability of kinnow fruit (Citrus reticulata) as affected by CMC and guar gum-based silver nanoparticle coatings. Molecules, 20(12), 22645–22661. https://doi.org/10.3390/molecules201219870
Sogi DS, Singh S (2001) Studies on bitterness development in Kinnow juice ready-to-serve beverage, squash, jam and candy. J Food Sci Technol 38:433–438
Takahashi, Y., Ohta, H., Yonei, H., and Ifuku, Y. (2007). Microbicidal effect of hydrostatic pressure on satsuma mandarin juice. International Journal of Food Science and Technology, 28(1), 95–102.
Tietel, Z., Lewinsohn, E., Fallik, E., and Porat, R. (2012). Importance of storage temperatures in maintaining flavor and quality of mandarins. Postharvest Biology and Technology, 64(1), 175–182. https://doi.org/10.1016/j.postharvbio.2011.07.009
Toker, R., Karhan, M., Tetik, N., Turhan, I., and Oziyci, H. R. (2014). Effect of ultrafiltration and concentration processes on the physical and chemical composition of blood orange juice. Journal of Food Processing and Preservation, 38(3), 1321–1329. https://doi.org/10.1111/jfpp.12093
Torres, B., Tiwari, B. K., Patras, A., Cullen, P. J., Brunton, N., and ODonnell, C. P. (2011). Stability of anthocyanins and ascorbic acid of high pressure processed blood orange juice during storage. Innovative Food Science and Emerging Technologies, 12(2), 93–97. https://doi.org/10.1016/j.ifset.2011.01.005
Venditti, T., Dore, A., Molinu, M. G., Agabbio, M., and D’hallewin, G. (2009). Combined effect of curing followed by acetic acid vapour treatments improves postharvest control of Penicillium digitatum on mandarins. Postharvest Biology and Technology, 54(2), 111–114. https://doi.org/10.1016/j.postharvbio.2009.06.002
Wang, H., Chen, G., Guo, X., Abbasi, A. M., and Liu, R. H. (2016). Influence of the stage of ripeness on the phytochemical profiles, antioxidant and antiproliferative activities in different parts of Citrus reticulata Blanco cv. Chachiensis. In LWT - Food Science and Technology (Vol. 69). Elsevier Ltd. https://doi.org/10.1016/j.lwt.2016.01.021
Won, M. Y., Lee, S. J., and Min, S. C. (2017). Mandarin preservation by microwave-powered cold plasma treatment. Innovative Food Science and Emerging Technologies, 39, 25–32. https://doi.org/10.1016/j.ifset.2016.10.021
Ye, X. Q., Chen, J. C., Liu, D. H., Jiang, P., Shi, J., Xue, S., Wu, D., Xu, J. G., and Kakuda, Y. (2011). Identification of bioactive composition and antioxidant activity in young mandarin fruits. Food Chemistry, 124(4), 1561–1566. https://doi.org/10.1016/j.foodchem.2010.08.013
Zanoni, B., Pagliarini, E., Galli, A., and Laureati, M. (2005). Shelf-life prediction of fresh blood orange juice. Journal of Food Engineering, 70(4), 512–517.
Zhang, F., Hu, L., Xu, G., and Chen, Q. (2011). Changes of some chemical substances and antioxidant capacity of mandarin orange segments during can processing. Procedia Environmental Sciences, 11(PART C), 1260–1266. https://doi.org/10.1016/j.proenv.2011.12.189.