Biosensors- types and application in food processing industry

Authors

  • Sunita Aggarwal Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, India. Author
  • Shalini Sehgal Department of Food Technology, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India Author
  • Akanksha Wadehra Tandon Patent Agent, IP Consultant, formerly Department of Food Technology, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India Author

Keywords:

Analyte, biosensors, detection, monitoring, risk assessment

Abstract

The hazard identification and characterization are important steps in the microbial food safety risk assessment methodology. There have been various  molecular techniques for the identification of microorganisms like Fluorescence microscopy, PCR and hybridization. The rRNA detection is suitable for  detecting metabolically active bacterial populations. Genetic fingerprinting is applicable to only bacterial pure cultures. Therefore, new detection and real  time methods are required for better assessment of the food products. The aim is to increase the detection specificity, reduction in the time of analysis,  application on a large scale and decrease the resource requirement as in the molecular methods. There is a need for the development of automated  techniques that will allow thorough and high output analysis of large number of samples. This will greatly facilitate the industrial microbial studies at all  levels. The real time monitoring of the food samples using biosensors is a promising field and being explored for their utility for various food categories.  This review explores types of biosensors, their working principles and their application in food fermentation and detection of hazards like allergens,  antibiotics, heavy metals. It also highlights the advantages and the scope of further improvement in the existing technology.  

References

Aboul-Enein, H. Y., Stefan, R.-I., van Staden, J. F., Zhang, X. R., Garcia-Campana, A. M., and Baeyens, W. R. G. 2000. Recent Developments and Applications of Chemiluminescence Sensors. Critical Reviews in Analytical Chemistry, 30(4), 271– 289.

Akyilmaz, E., and Dinçkaya, E. 2005. An amperometric microbial biosensor development based on Candida tropicalis yeast cells for sensitive determination of ethanol. Biosensors and Bioelectronics, 20(7), 1263–1269.

Alves, R. C., Barroso, M. F., González-García, M. B., Oliveira, M. B. P. P., and Delerue-Matos, C. 2015. New Trends in Food Allergens Detection: Toward Biosensing Strategies. Critical Reviews in Food Science and Nutrition, 56(14), 2304– 2319.

Arora, P., Sindhu, A., Dilbaghi, N., and Chaudhury, A. 2011. Biosensors as innovative tools for the detection of food borne pathogens. Biosensors and Bioelectronics, 28(1), 1–12.

Axtell, C. A., and Beattie, G. A. 2002. Construction and Characterization of a proU-gfp transcriptional fusion that measures water availability in a microbial habitat. Applied and Environmental Microbiology, 68(9), 4604–4612.

Balahura, L.-R., Stefan-Van Staden, R.-I., Van Staden, J. F., and Aboul-Enein, H. Y. 2018. Advances in immunosensors for clinical applications. Journal of Immunoassay and Immunochemistry, 40(1), 40–51.

Barthelmebs, L., Calas-Blanchard, C., Istamboulie, G., Marty, J.-L., and Noguer, T. 2010. Biosensors as Analytical Tools in Food Fermentation Industry. Bio-Farms for Nutraceuticals, 293–307.

Bechor, O., Smulski, D. R., Van Dyk, T. K., LaRossa, R. A., and Belkin, S. 2002. Recombinant microorganisms as environmental biosensors: pollutants detection by Escherichia coli bearing fabA′::lux fusions. Journal of Biotechnology, 94(1), 125– 132.

Belkin, S. 2003. Microbial whole-cell sensing systems of environmental pollutants. Current Opinion in Microbiology, 6(3), 206– 212.

Bernards, D. A., Macaya, D. J., Nikolou, M., DeFranco, J. A., Takamatsu, S., and Malliaras, G. G. 2008. Enzymatic sensing with organic electrochemical transistors. J. Mater. Chem., 18(1), 116–120.

Bizet, K., Gabrielli, C., and Perrot, H. 1999. Biosensors based on piezoelectric transducers. Analusis, 27(7), 609–616.

Blixt, Y., and Borch, E. 1999. Using an electronic nose for determining the spoilage of vacuum-packaged beef. International Journal of Food Microbiology, 46(2), 123–134.

Bundschuh, M., Filser, J., Lüderwald, S., McKee, M. S., Metreveli, G., Schaumann, G. E., Wagner, S. 2018. Nanoparticles in the environment: where do we come from, where do we go to? Environmental Sciences Europe, 30(1).

Campagnoli, A., Cheli, F., Savoini, G., Crotti, A., Pastori, A. G. M., and Dell’Orto, V. 2009. Application of an electronic nose to detection of aflatoxins in corn. Veterinary Research Communications, 33(S1), 273–275.

Campanella, L., Persi, L., and Tomassetti, M. 2000. A new tool for superoxide and nitric oxide radicals determination using suitable enzymatic sensors. Sensors and Actuators B: Chemical, 68(1-3), 351–359.

Chang, I. S., Jang, J. K., Gil, G. C., Kim, M., Kim, H. J., Cho, B. W., and Kim, B. H. 2004. Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosensors and Bioelectronics, 19(6), 607–613.

Chaubey, A., and Malhotra, B. D. 2002. Mediated biosensors. Biosensors and Bioelectronics, 17(6-7), 441–456.

Chee, G.J. 2013. Development and characterization of microbial biosensors for evaluating low biochemical oxygen demand in rivers. Talanta, 117, 366–370.

Chen, Z., Lin, Y., Ma, X., Guo, L., Qiu, B., Chen, G., and Lin, Z. 2017. Multicolor biosensor for fish freshness assessment with the naked eye. Sensors and Actuators B: Chemical, 252, 201–208.

Chevolot, Y., Vidal, S., Laurenceau, E., Morvan, F., Vasseur, J.-J., and Souteyrand, E. 2009. Carbohydrates as Recognition Receptors in Biosensing Applications. Recognition Receptors in Biosensors, 275–341.

Chiesa, L. M., Nobile, M., Panseri, S., and Arioli, F. 2017. Antibiotic use in heavy pigs: Comparison between urine and muscle samples from food chain animals analysed by HPLC-MS/MS. Food Chemistry, 235, 111–118.

Chinnappan, R., Rahamn, A. A., AlZabn, R., Kamath, S., Lopata, A. L., Abu-Salah, K. M., and Zourob, M. 2020. Aptameric biosensor for the sensitive detection of major shrimp allergen, tropomyosin. Food Chemistry, 314, 126133.

Choi, S., and Chae, J. 2012. An array of microliter-sized microbial fuel cells generating 100μW of power. Sensors and Actuators A: Physical, 177, 10–15.

Chouler, J., and Di Lorenzo, M. 2015. Water Quality Monitoring in Developing Countries; Can Microbial Fuel Cells be the Answer? Biosensors, 5(3), 450–470.

Chouteau, C., Dzyadevych, S., Chovelon, J.-M., and Durrieu, C. 2004. Development of novel conductometric biosensors based on immobilised whole cell Chlorella vulgaris microalgae. Biosensors and Bioelectronics, 19(9), 1089–1096.

Chowdhury, A. D., Ganganboina, A. B., Park, E. Y., and Doong, R. 2018. Impedimetric biosensor for detection of cancer cells employing carbohydrate targeting ability of Concanavalin A. Biosensors and Bioelectronics, 122, 95–103.

Ciosek, P., and Wróblewski, W. 2007. Sensor arrays for liquid sensing – electronic tongue systems. The Analyst, 132(10), 963.

Clark, L. C., and Lyons, C. (2006). Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences, 102(1), 29–45.

Cynkar, W., Cozzolino, D., Dambergs, B., Janik, L., and Gishen, M. 2007. Feasibility study on the use of a head space mass spectrometry electronic nose (MS e nose) to monitor red wine spoilage induced by Brettanomyces yeast. Sensors and Actuators B: Chemical, 124(1), 167–171.

D’Souza, S.F. 1989. Potentials of co-immobilizates in biochemical processing: the current state of the art. Journal of Microbial Biotechnology, 4(1), 63-73.

D’Souza, S. F. 2001. Microbial biosensors. Biosensors and Bioelectronics, 16(6), 337–353.

Damborský, P., Švitel, J., and Katrlík, J. (2016). Optical biosensors. Essays in Biochemistry, 60(1), 91–100.

Dávila, D., Esquivel, J. P., Sabaté, N., and Mas, J. 2011. Silicon-based microfabricated microbial fuel cell toxicity sensor. Biosensors and Bioelectronics, 26(5), 2426–2430.

Devillers, M., Ahmad, L., Korri-Youssoufi, H., and Salmon, L. 2017. Carbohydrate-based electrochemical biosensor for detection of a cancer biomarker in human plasma. Biosensors and Bioelectronics, 96, 178–185.

Dey, D., and Goswami, T. 2011. Optical Biosensors: A Revolution Towards Quantum Nanoscale Electronics Device Fabrication. Journal of Biomedicine and Biotechnology, 2011, 1–7.

Dias, L. A., Peres, A. M., Vilas-Boas, M., Rocha, M. A., Estevinho, L., and Machado, A. A. S. C. 2008. An electronic tongue for honey classification. Microchimica Acta, 163(1-2), 97–102.

Diculescu, V., Paquim, A.-M., and Brett, A. M. (2005). Electrochemical DNA Sensors for Detection of DNA Damage. Sensors, 5(6), 377–393.

Du, Z., Li, H., and Gu, T. 2007. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnology Advances, 25(5), 464–482.

Dymerski, T. M., Chmiel, T. M., and Wardencki, W. 2011. Invited Review Article: An odor-sensing system—powerful technique for foodstuff studies. Review of Scientific Instruments, 82(11), 111101.

Elad, T., Lee, J. H., Belkin, S., and Gu, M. B. 2008. Microbial whole-cell arrays. Microbial Biotechnology, 1(2), 137–148.

Esbensen, K., Kirsanov, D., Legin, A., Mortensen, J., Pedersen, J., Vognsen, L. Vlasov, Y. 2004. Fermentation monitoring using multisensor systems: feasibility study of the electronic tongue. Analytical and Bioanalytical Chemistry, 378(2), 391– 395.

Escuder-Gilabert, L., and Peris, M. 2010. Review: Highlights in recent applications of electronic tongues in food analysis. Analytica Chimica Acta, 665(1), 15–25.

Felice, C. J., Madrid, R. E., Olivera, J. M., Rotger, V. I., and Valentinuzzi, M. E. 1999. Impedance microbiology: quantification of bacterial content in milk by means of capacitance growth curves. Journal of Microbiological Methods, 35(1), 37–42.

Ferrini, A. M., Mannoni, V., Carpico, G., and Pellegrini, G. E. 2008. Detection and Identification of β-Lactam Residues in Milk Using a Hybrid Biosensor. Journal of Agricultural and Food Chemistry, 56(3), 784–788.

Gammoudi, I., Tarbague, H., Othmane, A., Moynet, D., Rebière, D., Kalfat, R., and Dejous, C. 2010. Love-wave bacteria-based sensor for the detection of heavy metal toxicity in liquid medium. Biosensors and Bioelectronics, 26(4), 1723–1726.

García-Alonso, J., Greenway, G. M., Hardege, J. D., and Haswell, S. J. 2009. A prototype microfluidic chip using fluorescent yeast for detection of toxic compounds. Biosensors and Bioelectronics, 24(5), 1508–1511. Goriushkina, T. B., Soldatkin, A. P., and Dzyadevych, S. V. 2009. Application of Amperometric Biosensors for Analysis of Ethanol, Glucose, and Lactate in Wine. Journal of Agricultural and Food Chemistry, 57(15), 6528–6535.

Górska-Horczyczak, E., Guzek, D., Moleda, Z., Wojtasik-Kalimowska, I., Brodowska, M., and Wierzbicka, A. 2016. Applications of electronic noses in meat analysis. Food Science and Technology, 36(3), 389–395.

Grieshaber, D., MacKenzie, R., Vörös, J., and Reimhult, E. 2008. Electrochemical Biosensors - Sensor Principles and Architectures. Sensors, 8(3), 1400–1458.

Han, S., Zhang, Q., Zhang, X., Liu, X., Lu, L., Wei, J.Zheng, G. 2019. A digital microfluidic diluter-based microalgal motion biosensor for marine pollution monitoring. Biosensors and Bioelectronics, 143, 111597.

Harris, C. 1985. The estimation of microbial biomass. Biosensors, 1(1), 17–84.

Haugen, J. E., Chanie, E., Westad, F., Jonsdottir, R., Bazzo, S., Labreche, S.Olafsdottir, G. 2006. Rapid control of smoked Atlantic salmon (Salmo salar) quality by electronic nose: Correlation with classical evaluation methods. Sensors and Actuators B: Chemical, 116(1-2), 72–77.

Held, M., Schuhmann, W., Jahreis, K., and Schmidt, H.L. 2002. Microbial biosensor array with transport mutants of Escherichia coli K12 for the simultaneous determination of mono-and disaccharides. Biosensors and Bioelectronics, 17(11-12), 1089–1094.

Hikuma, M., Takeda, M., Matsuoka, H., and Karube, I. 1995. Reagentless enzyme-based sensor using a gas-permeable membrane for determination of alcohols. Analytica Chimica Acta, 306(2-3), 209–215.

Hines, E. L., Llobet, E., and Gardner, J. W. 1999. Neural network based electronic nose for apple ripeness determination. Electronics Letters, 35(10), 821.

Homs, M. C. I. 2002. DNA Sensors. Analytical Letters, 35(12), 1875–1894.

Horsburgh, A. M., Mardlin, D. P., Turner, N. L., Henkler, R., Strachan, N., Glover, L. A. Killham, K. 2002. On-line microbial biosensing and fingerprinting of water pollutants. Biosensors and Bioelectronics, 17(6-7), 495–501.

Inshyna, N.M. , Chorna, I.V. , Primova, L.O., Hrebenyk, L.I and Khyzhnia Y.V. 2020. Biosensors: Design, Classification and Application. J. Nano- Electron. Phys. 12 No 3, 03033

Jelinek, R., and Kolusheva, S. 2004. Carbohydrate Biosensors. Chemical Reviews, 104(12), 5987–6016.

Joyner, D. C., and Lindow, S. E. 2000. Heterogeneity of iron bioavailability on plants assessed with a whole-cell GFP-based bacterial biosensor. Microbiology, 146(10), 2435–2445.

Karube, I., Matsunaga, T., Mitsuda, S., and Suzuki, S. 1977. Microbial electrode BOD sensors. Biotechnology and Bioengineering, 19(10), 1535–1547.

Karube, I., Mitsuda, S., and Suzuki, S. 1979. Glucose sensor using immobilized whole cells of Pseudomonas fluorescens. European Journal of Applied Microbiology and Biotechnology, 7(4), 343–350.

Katrlık, J., Pizzariello, A., Mastihuba, V., Švorc, J., Stred’anský, M., and Miertuš, S. 1999. Biosensors for L ́ -malate and L-lactate based on solid binding matrix. Analytica Chimica Acta, 379(1-2), 193–200.

Kim, Y.-H., Park, J.-S., and Jung, H.-I. 2009. An impedimetric biosensor for real-time monitoring of bacterial growth in a microbial fermentor. Sensors and Actuators B: Chemical, 138(1), 270–277.

Korpan, Y. I., Dzyadevich, S. V., Zharova, V. P., and El'skaya, A. V. 1994. Conductometric biosensor for ethanol detection based on whole yeast cells. Ukrainskii biokhimicheskii zhurnal (1978), 66(1), 78-82.

Kumar, J., Jha, S. K., and D’Souza, S. F. 2006. Optical microbial biosensor for detection of methyl parathion pesticide using Flavobacterium sp. whole cells adsorbed on glass fiber filters as disposable biocomponent. Biosensors and Bioelectronics, 21(11), 2100–2105.

Kumar, S., Kundu, S., Pakshirajan, K., and Dasu, V. V. 2008. Cephalosporins determination with a novel microbial biosensor based on permeabilized Pseudomonas aeruginosa whole cells. Applied Biochemistry and Biotechnology, 151(2-3), 653–664.

Liu, B., Zhuang, J., and Wei, G. 2020. Recent advances in the design of colorimetric sensors for environmental monitoring. Environmental Science: Nano, 7(8), 2195–2213.

Liu, J., and Mattiasson, B. 2002. Microbial BOD sensors for wastewater analysis. Water Research, 36(15), 3786–3802

Liu, S., Bai, J., Huo, Y., Ning, B., Peng, Y., Li, S.,Gao, Z. 2020. A zirconium-porphyrin MOF-based ratiometric fluorescent biosensor for rapid and ultrasensitive detection of chloramphenicol. Biosensors and Bioelectronics, 149, 111801.

Long, F., Zhu, A., and Shi, H. 2013. Recent advances in optical biosensors for environmental monitoring and early warning. Sensors, 13(10), 13928–13948.

Ma, Z., Liu, J., Sallach, J. B., Hu, X., and Gao, Y. 2020. Whole-cell paper strip biosensors to semi-quantify tetracycline antibiotics in environmental matrices. Biosensors and Bioelectronics, 168, 112528.

Maines, A., Cambiaso, A., Delfino, L., Verreschi, G., Christie, I., and Vadgama, P. 1996. Use of surfactant-modified cellulose acetate for a high-linearity and pH-resistant glucose electrode. Analytical Communications, 33(1), 27.

Majdinasab, M., Mishra, R. K., Tang, X., and Marty, J. L. 2020. Detection of antibiotics in food: New achievements in the development of biosensors. TrAC Trends in Analytical Chemistry, 127, 115883.

Majeed, H., Gillor, O., Kerr, B., and Riley, M. A. 2010. Competitive interactions in Escherichia coli populations: the role of bacteriocins. The ISME Journal, 5(1), 71–81.

Malhotra, S., Verma, A., Tyagi, N., and Kumar, V. 2017. Biosensors: principle, types and applications. Int. J. Adv. Res. Innov. Ideas Educ., 3(2), 3639-3644.

Mao, X.L., Wu, J., and Ying, Y.B. 2008. Application of electrochemical biosensors in fermentation. Chinese Journal of Analytical Chemistry, 36(12), 1749–1755.

Marrakchi, M., Dzyadevych, S. V., Lagarde, F., Martelet, C., and Jaffrezic-Renault, N. 2008. Conductometric biosensor based on glucose oxidase and beta-galactosidase for specific lactose determination in milk. Materials Science and Engineering: C, 28(5-6), 872–875.

Maukonen, J., Matto, J., Wirtanen, G., Raaska, L., Mattila-Sandholm, T., and Saarela, M. 2003. Methodologies for the characterization of microbes in industrial environments: a review. Journal of Industrial Microbiology and Biotechnology, 30(6), 327–356.

Mello, L. D., and Kubota, L. T. 2002. Review of the use of biosensors as analytical tools in the food and drink industries. Food Chemistry, 77(2), 237–256.

Mishra, G., Barfidokht, A., Tehrani, F., and Mishra, R. 2018. Food safety analysis using electrochemical biosensors. Foods, 7(9), 141.

Mohammad-Razdari, A., Ghasemi-Varnamkhasti, M., Izadi, Z., Rostami, S., Ensafi, A. A., Siadat, M., and Losson, E. 2019. Detection of sulfadimethoxine in meat samples using a novel electrochemical biosensor as a rapid analysis method. Journal of Food Composition and Analysis, 82, 103252.

Mulchandani, A., Mulchandani, P., Chauhan, S., Kaneva, I., and Chen, W. 1998. A potentiometric microbial biosensor for direct determination of organophosphate nerve agents. Electroanalysis: An International Journal devoted to fundamental and practical aspects of electroanalysis, 10(11), 733-737.

Muniandy, S., Teh, S. J., Thong, K. L., Thiha, A., Dinshaw, I. J., Lai, C. W., … Leo, B. F. 2019. Carbon nanomaterial-based electrochemical biosensors for foodborne bacterial detection. Critical Reviews in Analytical Chemistry, 49(6), 510– 533.

Inshyna, N. M., Chorna, I. V., Primova, L. O., Hrebenyk, L. I., … Khyzhnia, Y. V. 2020. Biosensors: design, classification and application. Journal of Nano- and Electronic Physics, 12(3), 03033–1–03033–9.

Nagle, H. T., Gutierrez-Osuna, R., and Schiffman, S. S. 1998. The how and why of electronic noses. IEEE Spectrum, 35(9), 22– 31.

Nambiar, S., and Yeow, J. T. W. 2011. Conductive polymer-based sensors for biomedical applications. Biosensors and Bioelectronics, 26(5), 1825–1832.

Neethirajan, S., Ragavan, V., Weng, X., and Chand, R. 2018. Biosensors for sustainable food engineering: challenges and perspectives. Biosensors, 8(1), 23.

Nilsson, K. G. I., and Mandenius, C.-F. 1994. A carbohydrate biosensor surface for the detection of uropathogenic bacteria. Nature Biotechnology, 12(12), 1376–1378.

Oh, S. Y., Shin, H. D., Kim, S. J., and Hong, J. 2008. Rapid determination of floral aroma compounds of lilac blossom by fast gas chromatography combined with surface acoustic wave sensor. Journal of Chromatography A, 1183(1-2), 170– 178.

Olafsdottir, G., Chanie, E., Westad, F., Jonsdottir, R., Thalmann, C. R., Bazzo, S., … Haugen, J. E. 2006. Prediction of microbial and sensory quality of cold smoked atlantic salmon (salmo salar) by electronic nose. Journal of Food Science, 70(9), S563–S574.

Owens, J. D., Thomas, D. S., Thompson, P. S., and Timmerman, W. 1989. Indirect conductimetry: a novel approach to the conductimetric enumeration of microbial populations. Letters in Applied Microbiology, 9(6), 245–249.

Pani, P., Leva, A. A., Riva, M., Maestrelli, A., and Torreggiani, D. 2008. Influence of an osmotic pre-treatment on structure property relationships of air-dehydrated tomato slices. Journal of Food Engineering, 86(1), 105–112.

Peixoto, L., Min, B., Martins, G., Brito, A. G., Kroff, P., Parpot, P., … Nogueira, R. 2011. In situ microbial fuel cell-based biosensor for organic carbon. Bioelectrochemistry, 81(2), 99–103.

Peltomaa, R., Glahn-Martínez, B., Benito-Peña, E., and Moreno-Bondi, M. 2018. Optical biosensors for label-free detection of small molecules. Sensors, 18(12), 4126.

Philp, J. C., Balmand, S., Hajto, E., Bailey, M. J., Wiles, S., Whiteley, A. S., … Dunbar, S. A. 2003. Whole cell immobilised biosensors for toxicity assessment of a wastewater treatment plant treating phenolics-containing waste. Analytica Chimica Acta, 487(1), 61–74.

Pickup, J. C., Hussain, F., Evans, N. D., Rolinski, O. J., and Birch, D. J. S. 2005. Fluorescence-based glucose sensors. Biosensors and Bioelectronics, 20(12), 2555–2565.

Pinheiro, C., Rodrigues, C. M., Schäfer, T., and Crespo, J. G. 2002. Monitoring the aroma production during wine-must fermentation with an electronic nose. Biotechnology and Bioengineering, 77(6), 632–640.

Piro, B., and Reisberg, S. 2017. Recent Advances in electrochemical immunosensors. Sensors, 17(4), 794.

Pisoschi, A. M. 2016. Potentiometric biosensors: concept and analytical applications-an editorial. Biochemistry and Analytical Biochemistry, 5(3).

Planque, M., Arnould, T., and Gillard, N. 2017. Food allergen analysis: detection, quantification and validation by mass spectrometry. Allergen.

Pollet, J., Delport, F., Janssen, K. P. F., Tran, D. T., Wouters, J., Verbiest, T., and Lammertyn, J. 2011. Fast and accurate peanut allergen detection with nanobead enhanced optical fiber SPR biosensor. Talanta, 83(5), 1436–1441.

Pospíšilová, M., Kuncová, G., and Trögl, J. 2015. Fiber-optic chemical sensors and fiber-optic Bio-Sensors. Sensors, 15(10), 25208–25259.

Prodromidis, M. I., and Karayannis, M. I. 2002. Enzyme based amperometric biosensors for food analysis. Electroanalysis: An international journal devoted to fundamental and practical aspects of electroanalysis, 14(4), 241-261.

Pundir, C. S., Lata, S., and Narwal, V. 2018. Biosensors for determination of D and L- amino acids: A review. Biosensors and Bioelectronics, 117, 373–384.

Ramanathan, K. 1999. The development and applications of thermal biosensors for bioprocess monitoring. Trends in Biotechnology, 17(12), 499–505.

Rasheed, P. A., and Sandhyarani, N. 2017. Electrochemical DNA sensors based on the use of gold nanoparticles: a review on recent developments. Microchimica Acta, 184(4), 981–1000.

Reshetilov, A. N. 2005. Microbial, enzymatic, and immune biosensors for ecological monitoring and control of biotechnological processes. Applied Biochemistry and Microbiology, 41(5), 442–449.

Reshetilov, A. N., Iliasov, P. V., and Reshetilova, T. A. 2010. The microbial cell based biosensors. Intelligent and Biosensors, 289-322.

Rotariu, L., Bala, C., and Magearu, V. 2002. Yeast cells sucrose biosensor based on a potentiometric oxygen electrode. Analytica Chimica Acta, 458(1), 215–222.

Rotariu, L., Bala, C., and Magearu, V. 2004. New potentiometric microbial biosensor for ethanol determination in alcoholic beverages. Analytica Chimica Acta, 513(1), 119–123.

Rudnitskaya, A., Schmidtke, L. M., Delgadillo, I., Legin, A., and Scollary, G. 2009. Study of the influence of micro-oxygenation and oak chip maceration on wine composition using an electronic tongue and chemical analysis. Analytica Chimica Acta, 642(1-2), 235–245.

Saevels, S., Lammertyn, J., Berna, A. Z., Veraverbeke, E. A., Di Natale, C., and Nicolaı̈, B. M. 2003. Electronic nose as a non destructive tool to evaluate the optimal harvest date of apples. Postharvest Biology and Technology, 30(1), 3–14.

Santos, A. O., Vaz, A., Rodrigues, P., Veloso, A. C. A., Venâncio, A., and Peres, A. M. 2019. Thin films sensor devices for mycotoxins detection in foods: applications and challenges. Chemosensors, 7(1), 3.

Sarkar, A., Sarkar, K. D., Amrutha, V., and Dutta, K. 2019. An overview of enzyme-based biosensors for environmental monitoring. Tools, Techniques and Protocols for Monitoring Environmental Contaminants, 307–329.

Sassolas, A., Blum, L. J., and Leca-Bouvier, B. D. 2012. Immobilization strategies to develop enzymatic biosensors. Biotechnology Advances, 30(3), 489–511.

Scott, E. 2003. Food safety and foodborne disease in the 21st Century. Canadian Journal of Infectious Diseases, 14(5), 277– 280.

Shen, Y., Wang, M., Chang, I. S., and Ng, H. Y. 2013. Effect of shear rate on the response of microbial fuel cell toxicity sensor to Cu(II). Bioresource Technology, 136, 707–710.

Shi, J., Feng, D., and Li, Y. 2017. Biosensors in fermentation applications. Fermentation Processes.

Sinesio, F., Di Natale, C., Quaglia, G. B., Bucarelli, F. M., Moneta, E., Macagnano, A., ... and D’Amico, A. 2000. Use of electronic nose and trained sensory panel in the evaluation of tomato quality. Journal of the Science of Food and Agriculture, 80(1), 63-71.

Singh, J., and Mittal, S. K. 2012. Chlorella sp. based biosensor for selective determination of mercury in presence of silver ions. Sensors and Actuators B: Chemical, 165(1), 48–52.

Śliwińska, M., Wiśniewska, P., Dymerski, T., Namieśnik, J., and Wardencki, W. 2014. Food analysis using artificial senses. Journal of Agricultural and Food Chemistry, 62(7), 1423–1448.

Su, L., Jia, W., Hou, C., and Lei, Y. 2011. Microbial biosensors: A review. Biosensors and

Sujatha, G., Dhivya, N., Ayyadurai, K., and Thyagarajan, D. 2012. Advances in electronic-nose technologies. International Journal of Engineering Research and Applications, 2(4), 1541-1546.

Sun, H., Mo, Z. H., Choy, J. T. S., Zhu, D. R., and Fung, Y. S. 2008. Piezoelectric quartz crystal sensor for sensing taste-causing compounds in food. Sensors and Actuators B: Chemical, 131(1), 148–158.

Tan, T., Schmitt, V., and Isz, S. 2001. Electronic tongue: a new dimension in sensory analysis. Food technology (Chicago), 55(10), 44-50.

Taranova, L., Semenchuk, I., Manolov, T., Iliasov, P., and Reshetilov, A.2002. Bacteria-degraders as the base of an amperometric biosensor for detection of anionic surfactants. Biosensors and Bioelectronics, 17(8), 635–640.

Thakur, M. S., and Ragavan, K. V. 2012. Biosensors in food processing. Journal of Food Science and Technology, 50(4), 625– 641.

Tkáč, J., Gemeiner, P., Švitel, J., Benikovský, T., Šturdık, E., Vala, V.Hrabárová, E. 2000. Determination of total sugars in ́ lignocellulose hydrolysate by a mediated Gluconobacter oxydans biosensor. Analytica Chimica Acta, 420(1), 1–7..

Tran-Minh, C. (n.d.). Enzyme biosensors based on pH electrode. Enzyme and Microbial Biosensors, 15–22.

Turemis, M., Silletti, S., Pezzotti, G., Sanchís, J., Farré, M., and Giardi, M. T. 2018. Optical biosensor based on the microalga paramecium symbiosis for improved marine monitoring. Sensors and Actuators B: Chemical, 270, 424–432.

Turner, A. P. F., Karube, I., Wilson, G. S., and Worsfold, P. J. 1987. Biosensors: fundamentals and applications. Analytica Chimica Acta, 201, 363–364.

Ur, A., and Brown, D. F. J. 1975. Impedance monitoring of bacterial activity. Journal of Medical Microbiology, 8(1), 19–28.

Vasilescu, A., Nunes, G., Hayat, A., Latif, U., and Marty, J.-L. 2016. Electrochemical affinity biosensors based on disposable screen-printed electrodes for detection of food allergens. Sensors, 16(11), 1863.

Vogrinc, D., Vodovnik, M., and Marinsek-Logar, R. 2015. Microbial biosensors for environmental monitoring. Acta Agriculturae Slovenica, 106(2), 67–75.

Von Sonnenburg, F., Tornieporth, N., Waiyaki, P., Lowe, B., Peruski, L. F., DuPont, H. L., … Steffen, R. 2000. Risk and aetiology of diarrhoea at various tourist destinations. The Lancet, 356(9224), 133–134.

Wang, W., Han, J., Wu, Y., Yuan, F., Chen, Y., and Ge, Y. 2011. Simultaneous detection of eight food allergens using optical thin-film biosensor chips. Journal of Agricultural and Food Chemistry, 59(13), 6889–6894.

Wang, X., Liu, M., Wang, X., Wu, Z., Yang, L., Xia, S., Zhao, J. 2013. P-benzoquinone-mediated amperometric biosensor developed with Psychrobacter sp. for toxicity testing of heavy metals. Biosensors and Bioelectronics, 41, 557–562.

Wen, G. M., Shuang, S. M., Dong, C., and Choi, M. M. F. 2012. An ethanol biosensor based on a bacterial cell-immobilized eggshell membrane. Chinese Chemical Letters, 23(4), 481–483.

Wen, W., Yan, X., Zhu, C., Du, D., and Lin, Y. 2016. Recent advances in electrochemical immunosensors. Analytical Chemistry, 89(1), 138–156.

White, S. P., Frisbie, C. D., and Dorfman, K. D. 2018. Detection and Sourcing of Gluten in Grain with Multiple Floating-Gate Transistor Biosensors. ACS Sensors, 3(2), 395–402.

WHO Fact sheet, top 10 causes of death 2018. Available at https://www.who.int/news-room/fact-sheets/detail/the-top-10- causes-of-death. Accessed in September 2020

Winquist, F., Krantz-Rülcker, C., Wide, P., and Lundström, I.1998. Monitoring of freshness of milk by an electronic tongue on the basis of voltammetry. Measurement Science and Technology, 9(12), 1937–1946.

Wu, Y.-Y., Huang, P., and Wu, F.Y. 2020. A label-free colorimetric aptasensor based on controllable aggregation of AuNPs for the detection of multiplex antibiotics. Food Chemistry, 304, 125377. Yan, Z., Niu, Q., Mou, M., Wu, Y., Liu, X., and Liao, S. 2017. A novel colorimetric method based on copper nanoclusters with intrinsic peroxidase-like for detecting xanthine in serum samples. Journal of Nanoparticle Research, 19(7).

Yang, Z., Wang, Y., and Zhang, D. 2018. An integrated multifunctional photoelectrochemical platform for simultaneous capture, detection, and inactivation of pathogenic bacteria. Sensors and Actuators B: Chemical, 274, 228–234.

Yong, Y.-C., and Zhong, J.-J. 2009. A genetically engineered whole-cell pigment-based bacterial biosensing system for quantification of N-butyryl homoserine lactone quorum sensing signal. Biosensors and Bioelectronics, 25(1), 41–47.

Youn, H., Lee, K., Her, J., Jeon, J., Mok, J., So, J., … Ban, C. 2019. Aptasensor for multiplex detection of antibiotics based on FRET strategy combined with aptamer/graphene oxide complex. Scientific Reports, 9(1).

Zhang, C., Zhang, D., Ma, Z., and Han, H. 2019. Cascade catalysis-initiated radical polymerization amplified impedimetric immunosensor for ultrasensitive detection of carbohydrate antigen 15-3. Biosensors and Bioelectronics, 137, 1–7.

Zhang, X., Ju, H., and Wang, J. 2008. Electrochemical sensors, biosensors and their biomedical Applications, xxi–xxii.

Zhao, L., Kong, D., Wu, Z., Liu, G., Gao, Y., Yan, X.,Lu, G. 2020. Interface interaction of MoS2 nanosheets with DNA based aptameric biosensor for carbohydrate antigen 15–3 detection. Microchemical Journal, 155, 104675.

Published

2024-05-22

How to Cite

Aggarwal, S., Sehgal, S., & Tandon, A.W. (2024). Biosensors- types and application in food processing industry . Journal of Postharvest Technology, 9(1), 1–19. Retrieved from https://acspublisher.com/journals/index.php/jpht/article/view/15154