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The present paper explores the quantum simulation of cold fusion phenomena
using superfluid helium. Leveraging the unique properties of superfluid helium,
such as ultracold temperatures and stability, an approach has been taken to simu-
late D-D nuclear fusion relevant to cold fusion scenarios with Quantum Monte
Carlo Methods and Density Functional Theory.Furthermore the present study
investigates quantum degeneracy effects, including Bose-Einstein condensation
and superfluidity that influence reaction dynamics and product distributions.
Based on computational simulations and theoretical analysis the interplay be-
tween nuclear dynamics and quantum phenomena in cold fusion has been eluci-
dated.The present study proposes a promising approach to unlock the mysteries

of cold fusion research and realizing practical fusion energy applications.

Introduction

Cold fusion, a concept promising a revolutionary and sus-
tainable source of energy, has captivated scientists since its
inceptionin thelate 20, century (Raoufetal., 2022). Despite
initial excitement, achieving controllable and reproducible
cold fusion reactions has remained a formidable challenge,
hampering progress towards practical energy applications
(Fleischmann and Pons, 1989). In recent years, the emerg-
ing field of quantum simulation has offered a promising
alternative avenue to investigate cold fusion phenomena
(Joseph et al., 2023). Quantum simulation involves the
controlled emulation of complex many-body systems by
leveraging superfluid helium, with its remarkable prop-
erties of ultracold temperatures and quantum coherence
that presents a unique opportunity to simulate and study
nuclear reactions pertinent to cold fusion at the quantum
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level (Tang et al., 2023). Past research efforts in cold fu-
sion predominantly focused on experimental approaches
utilizing electrochemical cells or gas-phase reactions, often
yielding controversial and inconsistent results (Feng, 1989;
Tabet and Tenenbaum, 1990 ). However, advancements in
computational modeling and quantum simulation tech-
niques have opened new possibilities for exploring cold fu-
sion mechanisms in a controlled and tunable environment.
For instance, recent theoretical studies have proposed
novel mechanisms for cold fusion reactions involving
low-energy nuclear reactions and coherent quantum tun-
neling effects (Kozima, 2011).Present work in the field of
quantum simulation of cold fusion with superfluid helium
builds upon these foundations, aiming to elucidate the un-
derlying physics governing cold fusion processes (Kozima,
1998). Experimental endeavors involve confining ultracold
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atomic systems within superfluid helium environments,
where quantum degeneracy effects play a crucial role in
shaping the reaction dynamics (Kozima, 2013). Compu-
tational simulations complement experimental efforts by
providing detailed insights into reaction mechanisms and
exploring the parameter space for optimizing cold fusion
reactions (Zhang et al., 2019). Among various proposed
mechanisms, the fusion of deuterium nuclei (D-D fusion)
stands out as a potential source of clean and abundant en-
ergy if realized (Hofmann, 2011). However, achieving and
sustaining the conditions necessary for D-D fusion, partic-
ularly at low temperatures, has proven challenging (McAl-
lister, 1992). In recent years, the exploration of novel envi-
ronments, such as superfluid helium, has sparked renewed
interest in understanding the fundamental principles un-
derlying cold fusion phenomena (Darve et al., 2012). Su-
perfluid helium, characterized by its remarkable quantum
properties, including zero viscosity and infinite thermal
conductivity at temperatures near absolute zero, offers a
unique medium for investigating nuclear fusion processes
(Liboff, 1994). Within this context, the deuteron, consist-
ing of a proton and a neutron, emerges as a bosonic particle
due to its integer spin (Sorongane, 2022). Thus, the study
of D-D fusion within superfluid helium naturally aligns
with the theoretical framework of n-interacting bosons in
quantum mechanics (Sasaki, 2009). This synthesis of cold
fusion with superfluid helium and the conceptualization of
deuterons as n-interacting bosons provide a rich medium
for exploring the quantum dynamics of fusion reactions
at the microscopic level. Superfluid helium operates in the
quantum regime, where phenomena such as Bose-Einstein
condensation and quantized vortices play a significant role
(Mermin and Lee, 1976). The unique quantum behavior
of superfluid helium may influence the dynamics of D-D
fusion reactions, potentially leading to novel insights or
mechanisms not observed in conventional fusion environ-
ments (Jose and Jawahar, 2021). Superfluid helium offers
a medium for quantum simulation of fusion reactions,
where the behavior of bosonic particles, such as deuterons,
can be studied in a controlled and tunable environment
(Gessner and Vilesov, 2019). This research delves into a
novel approach to facilitate Deuterium-Deuterium (D-D)
fusion under non-extreme, or “cold,” conditions by situat-
ing the reaction within the unique quantum environment
of superfluid helium. By employing a synergistic combina-
tion of first-principles quantum Monte Carlo (QMC) and
density functional theory (DFT) simulations, an approach
has been taken to investigate the quantum mechanical tun-
neling probability of deuterons in this medium. This study
is important because it provides a rigorous, computation-
ally-driven exploration of a potential condensed matter
fusion pathway, shifting the paradigm from speculative
theory to quantifiable analysis. A viable cold fusion mecha-
nism would represent a monumental breakthrough in en-
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ergy technology, offering a safe, clean, and abundant power
source. Superfluid helium presents a uniquely favorable en-
vironment for quantum tunneling due to its distinct physi-
cal properties. As a quantum fluid, it is characterized by
a highly correlated, many-body wavefunction and signifi-
cant zero-point motion of its atoms. Critically, helium pos-
sesses a very high ionization potential and a strong atomic
polarizability (Glaberson and Schwarz, 1987). When two
deuterium nuclei are introduced into the superfluid, they
strongly polarize the electron clouds of the surrounding
helium atoms. This collective polarization draws a signifi-
cant amount of electron density into the region between
the two deuterons. This localized buildup of negative
charge acts as an incredibly effective “screen”, neutralizing
the positive charges of the deuterons and drastically reduc-
ing the height and width of the Coulomb barrier separat-
ing them. The superfluid nature of the helium allows for
an eflicient and collective response to the presence of the
deuterons, creating a screening effect far more pronounced
than in a classical fluid or a regular solid lattice. The results
obtained confirm this enhanced screening, demonstrating
that the quantum nature of the superfluid medium sub-
stantially increases the probability of D-D quantum me-
chanical tunneling, thereby making superfluid helium a
promising and theoretically sound medium to explore for
facilitating cold fusion reactions in near future.

Methodology

The quantum mechanical simulation of cold fusion in su-
perfluid helium requires a sophisticated computational
approach that integrates multiple theoretical frameworks
and computational methods. The research methodology is
built upon the hybrid Quantum Monte Carlo (QMC) and
Density Functional Theory (DFT) framework, providing
a comprehensive treatment of the quantum many-body
problem while maintaining computational feasibility for
complex systems.The methodological approach follows a
hierarchical computational strategy that separates differ-
ent physical phenomena according to their characteristic
length and energy scales. The superfluid helium medium is
treated using DFT with specialized functionals optimized
for quantum fluids, while the deuteron dynamics and
nuclear interactions are handled through QMC methods
that can capture the full quantum correlations essential for
fusion processes. The quantum simulation enhancement
terms, including coherence effects and vortex dynamics,
are implemented through the Koopman-von Neumann
formalism embedded within the overall QMC-DFT frame-
work.

Quantum Monte Carlo Implementation

The Variational Monte Carlo (VMC) component serves
as the foundation for optimizing trial wavefunctions that
describe the deuteron-helium system. The implementa-
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tion utilizes the CASINO quantum Monte Carlo program
system, which has been extensively validated for electronic
structure calculations and can be adapted for nuclear sys-
tems. The VMC algorithm employs stochastic reconfigu-
ration techniques to optimize variational parameters in
the trial wavefunction, ensuring systematic improvement
toward the exact many-body ground state. The trial wave-
function incorporates Jastrow correlation factors to cap-
ture short-range correlations between deuterons and with
the helium medium:

lPtrial (R) = nf(rij) eXp _az(rk - Rcm)2 X (DHe (rHe)
i<j k

Where, the correlation factors are optimized to minimize
the energy variance while maintaining proper symmetry
properties. Diffusion Monte Carlo (DMC) calculations
provide exact ground-state energies within the fixed-node
approximation, offering systematic improvement over
VMC results. The implementation uses the QMCPACK
software suite, which provides high-performance parallel
computing capabilities and GPU acceleration for large-
scale simulations. The DMC algorithm employs impor-
tance sampling with the VMC-optimized trial wavefunc-
tion as a guiding function, enabling efficient exploration of
configuration space while maintaining the sign structure
necessary for fermionic systems. For finite temperature ef-
fects, Path integral Monte Carlo (PIMC) methods are im-
plemented to capture thermal fluctuations in the superfluid
helium medium. The PIMC approach maps the quantum
system onto classical ring polymers, allowing calculation
of thermodynamic properties and temperature-dependent
fusion rates. The implementation utilizes the Trotter de-
composition with optimized time-slice spacing to balance
computational efficiency with accuracy in representing
quantum effects.

Density Functional Theory Framework

The superfluid helium component is modeled using the
well-established Orsay-Trento density functional, which
has been extensively validated for helium systems and
properly accounts for the static response function and
phonon-roton dispersion. This functional incorporates
both condensate and normal fluid components to accu-
rately represent the limited BEC fraction (7-10%) observed
experimentally in helium-4. The DFT calculations are
performed using specialized codes optimized for super-
fluid systems, implementing the time-dependent density
functional theory (TDFT) formalism to capture dynamic
response properties. The functional includes non-local
correlations essential for describing the superfluid state
and its excitation spectrum. Supporting DFT calcula-
tions for electronic structure utilize established quantum
chemistry packages including Quantum ESPRESSO and
VASP. These calculations provide electronic densities and
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response functions necessary for computing screening ef-
fects and deuteron-helium interactions. The calculations
employ plane-wave basis sets with pseudopotentials opti-
mized for light elements, ensuring accurate representation
of electronic properties while maintaining computational
efficiency.

Hybrid QMC-DFT Integration

The integration of QMC and DFT methods follows a self-
consistent approach where DFT calculations provide effec-
tive potentials and screening functions that are then used
in QMC calculations of deuteron dynamics. This hybrid
methodology has been demonstrated in correlated mate-
rials research and adapted for the cold fusion simulation
problem. The computational workflow implements the fol-
lowing iterative procedure:

i. DFT calculation of superfluid helium ground state and
response properties.

ii. QMC calculation of deuteron wavefunctions in the
DFT-derived effective potential.

iii.Update of screening and interaction potentials based on
QMC density distributions.

iv. Convergence check and iteration until self-consistency.

Computational Infrastructure and Tools

The simulations utilize modern high-performance com-
puting infrastructure with hybrid CPU-GPU architectures.
The QMCPACK implementation employs hierarchical
parallelism strategies optimized for heterogeneous com-
puting environments, enabling efficient scaling to thou-
sands of cores while maintaining load balancing across
different computational tasks. The quantum simulation
algorithms are implemented using established quantum
computing frameworks including Qiskit for quantum cir-
cuit construction and Penny Lane for quantum machine
learning components. These frameworks provide stan-
dardized interfaces for quantum algorithm development
while maintaining compatibility with both classical simu-
lators and quantum hardware. A multiscale computational
approach integrates different levels of theory according to
the characteristic scales of the physical phenomena. The
framework follows the design principles demonstrated in
fusion reactor simulation codes like FERMI, which couple
different physics solvers through standardized interfaces.
The implementation uses the preCICE coupling library to
coordinate data exchange between QMC, DFT, and classi-
cal molecular dynamics components. The computational
workflow is managed through Python-based interfaces
that coordinate the various simulation components. The
PyDFT-QMMM framework provides the foundation for
hybrid quantum mechanics/molecular mechanics simula-
tions, enabling seamless integration of quantum and classi-
cal computational methods. The QuaSiMo library provides
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composable design patterns for hybrid quantum-classical
algorithms, facilitating the development of complex simu-
lation workflows. The implementation incorporates sev-
eral performance optimization strategies:

i. Memory Management: Advanced memory manage-
ment techniques enable simulation of systems beyond
single-node memory limits. For quantum state-vector
simulations, distributed memory approaches allow scal-
ing to 44+ qubits using multiple GPU nodes.

ii. Algorithm Optimization: Template metaprogramming
and SIMD intrinsics provide high computational effi-
ciency for core kernels. The modular architecture en-
ables addition of new wavefunctions and observables
while maintaining performance.

iii.Load Balancing: Dynamic load balancing algorithms
distribute computational work across heterogeneous
computing resources, ensuring efficient utilization of
both CPU and GPU components.

Validation and Benchmarking

The computational methods undergo systematic valida-
tion through comparison with established theoretical re-
sults and experimental data where available. Benchmark
calculations include:

i. Superfluid helium thermodynamic properties com-
pared to experimental measurements

ii. Nuclear reaction cross-sections validated against estab-
lished theoretical models

iii. Quantum tunneling probabilities benchmarked against
analytical WKB calculations

iv. Finite-size effects characterized through systematic
scaling studies

The validation process ensures that the hybrid QMC-DFT
approach maintains accuracy while providing computa-
tional efficiency necessary for investigating cold fusion en-
hancement mechanisms in superfluid helium.

This comprehensive computational methodology provides
the theoretical and practical foundation for investigating
quantum simulation of cold fusion processes in superfluid
helium, combining the accuracy of advanced quantum
methods with the computational power necessary to ad-
dress this challenging many-body problem.

Theory

The primary challenge in achieving D-D fusion at low
temperatures is overcoming the Coulomb barrier, the elec-
trostatic repulsion between positively charged deuterium
nuclei. Quantum tunneling plays a crucial role in enabling
particles to traverse this barrier at lower energies than clas-
sical physics would predict. Superfluid helium provides
an environment where quantum tunneling effects can be
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enhanced due to its unique properties. The Bose-Einstein
condensate (BEC) state allows for the formation of coher-
ent quantum states, potentially facilitating more efficient
quantum tunneling through the Coulomb barrier. Helium
unlike other substances remains in the liquid state ( unless
subjected to very high pressure ) even down to lowest tem-
peratures. It is the light mass of these atoms and the rela-
tively weak van der waals interaction between such closed
—shell atoms which is responsible for this . In fact liquid
helium is a quantum liquid . This can be seen from the fact
h

that the thermal de Broglie wavelength === (for a par-
ticle possessing the average momentum corresponding to
a collections of particles at equilibrium at a temperature T)
for helium at the temperature at which it liquefies (~4K) is
~ 44, while the interparticle spacing is ~ 2.654 . Therefore
the wavefunctions of the different particles have substan-
tial overlaps and the quantum mechanics of identical par-
ticles play an important role.Indeed a peculiarity of liquid
helium was evident when its specific heat was measured as
a function of temperature through the singular behavior at
T =2.17K known as the lambda point because the shape of
the curve resembled the greek letter A ( fig.1 ).

In the 1930’s Kapista showed that liquid helium could flow

\

T3

Tc

T ——

Figure 1: The specific heat and lamda point of He*.

through narrow capillaries without fluid viscosity (fig.2)
(Mehl and Zimmermann, 1968).
Andronikashvilli, working in Kapista’s laboratory, showed

\ /
R —— I
/ Sha

Figure 2: Superfluid capillary flow of liquid He*.
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through the study of aluminium discs mounted on a com-
mon axis rotating in a helium bath (fig. 3) , that a fraction
of the fluid contributed to the viscosity and a fraction did
not, the latter increasing as T—0 (Andronikashvili and
Mamaladze, 1966).

This led to the two fluid model of liquid helium ( A normal

Figure 3: Andronikashvilli’s Experiment.

and a superfluid liquid, the latter called Helium - IT ) , with
number densities n_and n_which vary with temperature
(fig. 4) (Feynman, 1954).

The peculiar properties of Helium — II was at first ascribed

Figure 4: Number densities of normal and superfluid
helium VS Temperatures.

in a general way to Bose-Einstein Condensation, but it was
emphasized by Landau that it was essential to understand
how and why the liquid showed absence of viscosity and
behaved like a superfluid (Landau, 1941). In order to ap-
preciate this central aspect of the problem it is necessary
to grasp the origin of viscosity in normal fluids. Consider
a body of mass M entering a fluid with velocity t . If
were zero then the body would suffer kicks from the atoms
in the fluid in all directions in a random manner and as
a consequence though the body would have a fluctuating
motion , nevertheless , on the average it would remain at
rest. However, if it were moving with velocity & the body
would suffer more backward kicks per unit time than for-
ward kicks simply because the flux of the particles being
larger that way. This would on the average lead to a retard-
ing force which for a spherical body of radius R would be
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6mnR|1|, where 7 is the coefficient of viscosity. On the
average, momentum is transferred from the body to the
particles (or more generally the elementary excitations) of
the fluid. Landau argued that for superfluidity to occur it
is necessary that for some reason momentum cannot be
transferred from the body to the elementary excitations of
the fluid (Gogate and Pathak, 1946). He went on to show
that this would indeed be the case if the relationship be-
tween the energy and the momentum of the elementary
excitations of the fluid were linear (that is phonon-like
and not particle-like) (Khanna and Singh, 1985). It can be
showed by considering a body of mass M and initial veloc-
ity 1 entering a fluid; suppose it transferred energy E (p)
and momentum (p) with [E(p) = ¢|g|] to the fluid and
the body moved away with velocity # (fig. 5).

il
Mg “[{Le\
Elementary excitation
—>
E(p).p
Figure 5: Kinematics of Energy-Momentum transfer to

the system.

If such were the situation then we would have, as a conse-
quence of momentum conservation:

Mi=Mv +p (1)
and from energy conservation
%Mu: =%Mu:+5[ﬁ] (2)

On squaring u— ﬁ = Mi, we have m2u? — 2upMcos@ +p* = Mv?
and using energy conservation we obtain,
E(p)

cosfd = £
u

ZMu . (3)
Therefore, we see that €06 = i_? < if the elementary
excitations of the liquid were indeed phonon like. Thus
for p<c, the process could not occur since it would imply
cosf > 1 and therefore energy-momentum conservation
would forbid it. Of course normally one would expect the
elementary excitations of a fluid to be residing in the atoms
of the fluid and these would be particle like, viz. £ = 2 (a
quadratic relationship between energy and momentum).
Somehow then the interactions between helium atoms and
their quantum nature must be at the root of the elementary
excitations being modified such that their energy is a linear
function of the momentum and thereby giving rise to the
phenomenon of superfluidity. Indeed this question may be
studied directly through experiment by looking at the en-
ergy and momentum transfers suffered by slow neutrons
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scattered inelastically from liquid Helium at temperatures
below the lambda point (Brewer et al., 1955). These experi-
ments revealed that the excitations in liquid helium have
energies and momenta (fig. 6).

—E = A+(p — p, )2/2m

>
E =c|p|

p

Figure 6: Energy and Momentum of simple excitations
in the superfluid helium.

It can be observed that for small momenta, the elemen-
tary excitations (or quasiparticles) have a linear dispersion
(i.e. the energy is linearly proportional to the momentum)
in conformity with the expectations expressed by Landau
as the basis of superfluidity. However, for large momenta
(which shall not concern us here) the dispersion is qua-
dratic. Restricting ourselves to small, the next step is to un—
derstand how the particle - like helium atoms with £ = >
can, because of quantum effects and interactions, become
modified to yield phonon like excitations. Taking context
of path breaking work of Bogoluibov (Sankovich, 2010), in
a bulk fluid it can be assumed that the translational invari-
ance is suitable to expand the Schrédinger field operator
into plane wave modes: - e™*. The Hamiltonian compris-
es of two terms: the kinetic energy of the atoms and the
inter-atomic potential U(¥ — 7). Accordingly we get,

H —ifdar*{f’f(?jv () +

L[ [dF UG - )P O PP P (4)

Expandine into plane waves the kinetic energy term
gives ¥, - — Taz , while the potential energy operator in
the Fock space can be given by, u ——fd3fd3?’u(r -7

T -k, T - (5)

J\ i k I ﬂk & ﬂk
Making a change of variable # = R + £ and ¥ = R — :, the
double mtegrals in equation (4) becomes, [d3R [ d? pU(p)

qqqqq Jz _vak $E,F,4E, [ dpu(p)e s (6)

Where Eg = El + g and k4 = kg -q, taking care of the mo-
mentum conserving 6 and introducing 9 as the momen-
tum transfer. Accordingly, the Hamiltonian becomes,

BER® ¢ 1
H= Ek m ﬂﬂak +21:Ek'_*kyf?u

=

e—tk '

g

tk: _ —tk:
e ake

ﬂie

=

A HEE HEE,

E e

ot Lot
79,7 M43 MR

(7)
where Uz = [d®pU (5)e'¥% is the fourier transform of the
two — body potential. To simplify the process, we assume
U(r—+) = A8(+—+"), i.e. a pure contact interaction (in
view of the short — ranged force between atoms). Then it
can be understood that Uz = .1 becomes independent of the

i becomes
ﬂa az + ; 25 7d

et - o1l

2ar

— h7k" T -,
H Ek P~ ﬂi P.+7%, 0%

(8)
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At sufficiently low temperatures one expects via the Bose
distribution that the magnitude of the chemical potential
will become smaller and smaller (€, — 0) till the zero mo-
mentum state will have a macroscopic population. As such
with the formation of the condensate the eigenvalue N,
of ala, will become large and macroscopic compared to
which [a,,a]] =1 « N, will be negligible, so that for all
practical purposes a; will be a c-number (classical num-
ber) and we may with impunity write a,™ al~ /Ny . A more
cogent and sophisticated description would be to charac-
terize the condensate as a coherent state (eigenstate of the
annihilation operator) where states of different number of
particles are superimposed such that the average number
of particles is a large macroscopic number. Within effect of
a large number , an approximation is a preferable choice
where the eigenvalues of ﬂ%ﬂz (with k = 0) are expected to
be relatively small. Hence the largest contribution will come
from the term in the sum representing the inter-atomic po-
tential with k, = 0 = k, and g = 0 so that we have a]a]a,a,
; though the next to leading order will naively be expected
to consist of three operators with zero momentum and
the term k = 0 is absent because it would violate the con-
servation principle of momentum ie. k, + k, = k; + k,
; accordingly the next terms to be retained are the ones
with two of the operators having k = 0 and two with non-
zero momentum. These terms are of three types , firstly
those with &, _o_Ej Or k,=0=g§Or k,=0=Fk,—qor
k, = 0=k, + g giving four terms of the generic forms ala;
(with % =0 contributmg 4alag secondly a term with two
operators having k = 0 comes from k,=0= k, giving us
ala’- and thirdly with k, + § = 0 =k, — g leading to the
generic form aza_;. Keeping terms upto this order and ne-
glecting quadratic terms with non-zero ks , the effective
Hamiltonian can be given by,

H =135 4 az) (9)

ag ap gty +

Where, the prime over the summation sign indicates that
k = 0. It is also a noteworthy aspect that the kinetic energy
term receives no contribution anyway from k¥ = 0 and as
such putting a prime on that sum is redundant.In this re-
gard a strategy can be adopted by expressing everything
in terms of the operators corresponding to k = 0 and the
total number operator N = X3 a{a; because this is a fixed
number. Thus for instance, ﬂgﬂgﬂoﬂo which is in effect Nj
as (N —-Xz a% aﬂ} ~ N? —2N E- a%z az and dropping the
terms of fourth order in operators with k = 0.In a similar
way N, can be replaced occurring as a prefactor before the
last sum in H,;; by ~ and accordingly we have

Hgff__ N? -|—E- [( )ma~+ na%a q-l- S naga_ k] (10)
to the order of interest. A posteriori may be sought upon
the conditions under which this approximation is valid. In
equation (10), the expression for effective Hamiltonian,
N /v has been replaced with 1, the number density. The
effective Hamiltonian now is quadratic in the operators a

A Wy gt ¢ 11 t
o rmt T ~, 2p(agals +4aia; + oz
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and a'. Bogoluibov et al. have showed how the eigenvalues
of an operator of the form

2 (11)

can be obtained through a canonical transformation

named after him, i.e.
by =u,az +via’y and b% zukﬂ'%‘l'vk“

i — T t 1
= fﬂ,ﬂa;{- T naza_- +naga

4

—k

=

-k

where k = |k| and demanding that [bﬂrbﬂ =1=up—vi=1,

using which the inverse of the transformation is readily
written down yielding ag = u, by — vkbfz
and n% = ukbg —vb_z

Implementing this transformation on A we get,
A= f{ukb:r — v b_ }(uklr - ”kbig}

+ ?F(“kb; - vkb—ﬂ)(u'kb_i - vkb§)+ ??{ukbﬂ - vkbiﬂj(ukb—ﬂ - ukbg)
The above expression can be reduced into the standard b7b

form by equating the coefficients of the undesirable bb and
bTbT terms equal to zero , which is ensured by substituting

—&(vuy) v+ nui =0 (12)

The condition uj — v = 1 is most conveniently satisfied by
putting u, = coshy and v, = sinhy.

Accordingly to achieve the standard form we need
—fsmhxcoshx +y(sink®y +cosh®y) = 0, or ncosh2y — —5111.‘12,}; =0,
or h2y = ? Substituting these values into the expression
for A we get, A = \,W(bgbi ;) £ (13)
Since the operators with different kK commute the Bogolu-
ibov transformation carried out above for A works for the
Hamiltonian we have for our system and leads to

Hop = 2N + 3z [hooy (bbg +3) - (22 +,1n}}
nk

2,4
|(T1 k
\JI a4m? +

(14)

2m

na).

The eigenvalues of the above expression provide quantized
excitations of energy he,, above the ground state, which
for small k is given by nk. "1“ . This linear dependence of the
energy of elementary excitations (or quasiparticles of the
system) on the momentum is precisely the nature of the
dispersion (phonon-like) which was required by Landau
to explain the superfluid nature of liquid helium. More-
over the velocity with which these elementary excitations
travel is given by c.-%-x j‘:" This mode is known as the sec-
ond sound as unhke ordinary sound which is merely a
compressional mode of the liquid as a whole, this stands
for the oscillations of the excitations (viz. the normal fluid)
relative to the condensate. This is an entropic wave (the
condensate being an ordered fluid). Heat which is ordinar-
ily transferred in a diffusive manner can travel as a wave
in liquid helium below the critical temperature. The fact
that the observed dispersion though linear at small k has a
minimum for larger k and then becomes particle like (~k?)
is outside the scope of the present research. To search for
an a posteriori justification for the assumption that the
number of atoms in the non-condensate is small, it is ad-

where w, =
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visable to look for that number (given by Xz v7) and can be
concluded that after some stralghtforward algebra that the
condition reduces t
Which means that the 1nteract10n 4 or rather nd should be
sufficiently small. Furthermore noting the occurrence of
the 3/2 power one may also remark that the result obtained
is essentially non-perturbative in nature, a feature that can
also be concluded from the fact that the qualitative change
from particle-like to phonon-like excitations could not have
been achieved through perturbation methods. Indeed the
interaction of terms with opposne momenta (exemplified
through the occurrence of a; and al _z in the quasi-particle
operators) would be in a perturbatlon approach lead to en-
ergy denominators becoming very large when the magni-
tudes of the momenta involved become small. Physically
this corresponds to long ranged correlations becoming im-
portant. Indeed this is an essential feature for superfluidity
and the helium atoms move in a coherent manner in the
condensate. It is also important to note that the specific
heat of liquid helium at low temperatures (near T = 0K and
below the A - point) varies as T as is expected for a system
of bosons with linear dispersion (compare with photon gas
and phonons in solids) and not as 7' ¥? as would have been
the case if liquid helium behaved as an ideal gas of massive
bosons. Superfluid helium-4, in its Bose-Einstein conden-
sate (BEC) state thus exhibits remarkable quantum proper-
ties such as super fluidity and coherence. These properties
arise from the collective behavior of its n-identical boson
atoms, forming a macroscopic quantum wavefunction.
This makes superfluid helium ideal for simulating other
bosonic systems, including deuteron nuclei in case of cold
fusion. The theoretical framework for quantum simulation
of cold fusion in superfluid helium emerges from the fun-
damental requirement to overcome the Coulomb barrier
between deuterons at energies far below classical fusion
thresholds (Lys and Lyons, 1965). Cold fusion represents
a hypothesized nuclear reaction occurring at or near room
temperature, contrasting with conventional fusion requir-
ing extreme conditions. The challenge lies in facilitating
deuteron-deuteron fusion through quantum mechanical
enhancement mechanisms provided by the superfluid he-
lium medium, which offers unique properties unavailable
in vacuum or conventional materials (Mason and Rice,
1954). The fundamental process under consideration is the
fusion of two deuterons (D+D), which at short distances
experience a strong nuclear attraction. However, at larger
separations - on the order of several femtometers - the re-
pulsive Coulomb potential dominates (Pines et al., 2020).
The effective interaction potential between two deuterons
is given by,

(15)

represents the repulsive
(r)isa short—range attrac-

Elff [:I") 47”0’ +I’:uc (J’":]
Where the Coulomb term P
electrostatic interaction and v

nuc
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tive nuclear potential that becomes significant only when
r %= 2 fm. At very short distances, nuclear forces come into
play, which are necessary for fusion to occur.This potential
is complex, involving a repulsive core at very short distanc-
es and an attractive well at slightly longer distances which
can be modeled using Woods-Saxon potential given by
Gao et al. (2024), V,,..(r) = —ﬁr (16)
Where b is a length representing ‘the “surface thickness
of the nucleus and r = 1,4%/3, is the nuclear radius where
(2 1.2 X 107%m & 1.2fm) is a constant known as fermi
radius and 4 is the mass number. The equation (16) can be
rewritten as V,,.(r) = =1} exp (—:—) , for simplicity let us
consider 7, * 1.2fm and ¥, ~ 50 MeV. The Coulomb bar-
rier dominates for » = 5 fm, while the nuclear attraction
becomes significant only at distances < 2 fm. The feasibility
of fusion depends on the overlap of deuteron wavefunc-
tions, which is constrained by the Heisenberg uncertainty
principle (Busch et al., 2007):

Ax.Ap =t

2 (17)
To localize a deuteron within Ax ~ 1.2 fm, the correspond-
ing momentum uncertainty is given by :

k 197 Mev .
A 7 Mev. fm

Ap = 28x 2x1.2 fm = 82.08 MeV/c (18)
leading to a minimum kinetic energy given by :

- (ap)? ., (82.08)%
Ep = Ewmw 1.79 MeV (19)

Where mp represents the mass of the deuteron, which
is the nucleus of deuterium. A deuteron consists of
one proton and one neutron bound together and
mp & 2.013553 u® 3.3436 X 107%7 kg ~ 1875.6 MeV/c?
(Thomas and Melnitchouk, 1998).

From equation (19), we can estimate that the value ob-
tained is far above the thermal energies available in cold
fusion environments (typically E < 1 eV). This shows that
direct overlap of deuteron wavefunctions in free space
is energetically forbidden at low temperatures and only
quantum tunneling can enable fusion under such condi-
tions (Chubb, 2005). The problem of cold fusion involves
overcoming the Coulomb repulsion between two deuter-
ons (nuclei of deuterium) at energies much lower than
those required in conventional fusion. The superfluid he-
lium medium provides a quantum environment that can
potentially enhance tunneling probabilities and enable fu-
sion at low energies (Baxi and Wong, 2000).The theoretical
foundation begins with establishing the complete many-
body Hamiltonian that governs the quantum simulation of
cold fusion processes within a superfluid helium medium
(Simenel, 2012). The total system Hamiltonian emerges
from the superposition principle applied to interacting
quantum subsystems. Each component represents distinct
physical processes that must be treated consistently within
the quantum mechanical framework. The complete ma-
ny-body Hamiltonian governing the quantum simulation
system begins with the superposition principle applied to

72

Quantum Simulation of Cold Fusion in the Medium of Superfluid Helium

interacting quantum subsystems. The total Hamiltonian of
the system takes the form:

Hegeat =Hge + Hy +Hyy + Hy gy, + Equm:rum (20)
where each component represents distinct physical pro-
cesses that must be treated consistently within the quan-
tum mechanical framework.The superfluid helium com-
ponent follows from the Gross-Pitaevskii formulation for
weakly interacting Bose gases, where the order parameter
description begins with the field operator for helium atoms
(Kobe, 1972). The macroscopic occupation of the ground
state leads to the condensate wavefunction, and the Gross-
Pitaevskii equation guarantees conservation of total par-
ticle number through the continuity equation (Abid et al.,
2003). Starting from the many-body Hamiltonian for in-
teracting bosons, the mean-field approximation separates
the condensate and non-condensate components. The su-
perfluid helium Hamiltonian becomes:

EHB = fdar [% WipHs (T‘)F + Vrmp (rjwl’UHs (er +g3ﬁ ‘E’UHB (r)|4:| (21)

The kinetic energy term represents quantum pressure ef-
fects, while the quartic interaction term accounts for s-
wave scattering between helium atoms. The interaction
strength, gs. %ﬁ“”* depends on the scattering length,
which determines the sign and magnitude of inter-atomic
interactions (Pieri and Strinati, 2003). Here, gx. indicates
the interaction strength (coupling constant) characterizing
the effective two-body interaction between helium-4 atoms
in the condensate and it determines the nonlinear interac-
tion term in the Gross-Pitaevskii equation and influences
the dynamics and stability of the superfluid, ay. indicates
the s-wave scattering length for helium-4 atoms and it
quantifies the low-energy two-body scattering properties
and effectively represents the range and strength of the
short-range repulsive interaction between helium atoms.
For helium-4, this is a positive value indicating repulsive
interactions. My, indicates the mass of a helium-4 atom.
This term appears in the denominator because the inter-
action strength depends inversely on the particle mass,
reflecting the kinetic contribution to the system. This in-
teraction arises from low-energy scattering theory and is
valid when the interatomic potential can be approximated
by a contact interaction characterized by ag,. It encapsu-
lates how the microscopic two-body interactions translate
into an effective mean-field interaction in the superfluid.
This interaction strength is crucial for modeling superfluid
helium-4 within the Gross-Pitaevskii equation framework,
determining the nonlinear self-interaction term that affects
the condensate’s properties such as sound velocity, excita-
tion spectrum, and stability. Superfluid helium-4 exhib-
its Bose-Einstein condensation (BEC) below the lambda
point T; & 2.17 K, but experimental and quantum Monte
Carlo studies indicate that only ~7-10% of the atoms actu-
ally condense at T — 0 K. The remaining 90-93% form a
highly correlated non-condensed fraction with significant

A
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quantum fluctuations. Thus experimental measurements
consistently show that only 7-10% of helium-4 atoms con-
dense into the Bose-Einstein condensate at absolute zero
temperature, T — 0 K. This limited condensate fraction re-
quires modification of the standard mean-field approach
to accurately represent the superfluid state (Vilchynskyy
et al., 2013).The helium wavefunction incorporates both
condensate and normal fluid components:

Py (r) = \,“El’ucmmsnsarg (r) + \,“Jl_—fﬁscl’unm-ma: (r) (22)
The condensate fraction, fzse * 0.07 — 0.10 reflects strong
correlations in liquid helium that deplete the macroscopic
occupation of the ground state. The remaining 90-93%
forms a correlated normal fluid that maintains superfluid
properties through collective excitations. The computed
values of the condensate fraction lie within 8.8-14% de-
pending on the model potential for the short-range inter-
action, agreeing with recent experimental measurements
(Trachenko, 2023).The deuteron kinetic energy Hamilto-
nian incorporates both translational motion and internal
nuclear structure. Each deuteron carries binding energy
of approximately 2.224 MeV, representing the energy re-
quired to separate the proton and neutron constituents.
The deuteron exhibits unique properties as the simplest
bound nuclear system, with total angular momentum of
one unit due to parallel proton and neutron spins. The deu-
teron Hamiltonian accounts for center-of-mass motion in
the helium medium plus internal degrees of freedom:

Np B 1+ H

I+ Ay, (23)

internal

The internal Hamiltonian describes the proton-neutron
bound state within each deuteron, while the kinetic term
governs motion through the superfluid medium. The deu-
teron mass m, reflects the binding energy contribution
through Einstein’s mass-energy relation (Hecht, 2009).The
deuteron-deuteron interaction combines long-range Cou-
lomb repulsion with short-range nuclear attraction. The
Coulomb interaction dominates at large separations, cre-
ating the fusion barrier that must be overcome for nuclear
reactions to proceed. The nuclear force operates only at
femtometer distances; approximately the size of nuclei. The
interaction Hamiltonian separates into electromagnetic
and strong nuclear components:

Eie:j[vf [zr:'}') + Wy (r:'}')] (24)
The Coulomb potential V- (ry) = h:—,l, provides the
primary barrier to fusion, while the nuclear potential
Vu(ry) = Voe .,l , enables fusion when deuterons approach
within nuclear range. The nuclear force range param-
eter r, ~ 1.2 fm sets the scale for strong interactions and
r; = |r: — 1] is the inter-deuteron separation. Since helium
atoms are electrically neutral, direct Coulomb interactions
between deuterons and helium are absent (Cetin et al.,
2025).The primary interactions occur through weak van
der Waals forces , quantum exchange effects and possibly

H,

Hdd =
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local polarization effects (Simko and Gray, 2014). Van der
Waals forces in helium are particularly weak due to the
closed-shell electronic structure and small polarizability
(Temmerman, 2021). Thus, the superfluid helium acts as a
stabilizing, low-noise medium rather than a repulsive one.
The deuteron-helium interaction emerges from induced
dipole moments and overlap of electronic wavefunctions:

2 [ & [V D] %P (25)

The van der Waals potentlal vanT) follows the —r~&
dependence characteristic of dipole-induced dipole in-
teractions (Tanabe, 2016). The exchange interaction
Vexchangs (r) accounts for quantum mechanical effects
when deuteron and helium wavefunctions overlap signifi-
cantly, including both BEC and non-condensed dynamics.
The BEC component introduces long-range quantum co-
herence, while the non-condensed part contributes fluc-
tuating local fields. Phonon and roton excitations in the
helium can modify inter-deuteron interactions through
effective many-body potentials (Castin et al., 2019). The
quantum simulation enhancement incorporates the Koop-
man-von Neumann formalism to embed classical-quan-
tum hybrid dynamics within a unitary quantum evolution
(Joseph et al., 2023). This approach elevates classical vari-
ables to quantum operators while introducing conjugate
momenta to maintain canonical commutation relations.
The Koopman-von Neumann Hamiltonian emerges from
the requirement that classical equations of motion be re-
produced through quantum commutators:

S T80 + £, ) (26)

where [v | = thd;k, defines the canonical pairs. This
construction allows classical fusion dynamics to be treated
within the quantum simulation framework while preserv-
ing all quantum coherence effects. Quantum coherence ef-
fects arise from the ability to create superposition states
of deuteron configurations that are classically forbidden
(Joseph et al., 2023).The coherence Hamiltonian describes
coupling between different deuteron pair states through
the superfluid medium:

Hcohs:l'sncs = Ei{}'fi}'eiélj | q,f;:i)Hq,r;:j) l (27)

The coupling strength [;; depends on the overlap of deu-
teron wavefunctions mediated by the superfluid, while the
phase factors @;; reflect the quantum mechanical phases
acquired through medium interactions. This coherence
can potentially enhance tunneling probabilities beyond
classmal expectatlons Superﬂuld hehum supports quan-

Hd—Hs —‘.l'|) + vsxchmagsuri -

AL'\I

(Glaberson and Schwarz, 1987).These topological defects
can interact with deuterons and potentially facilitate fusion
through vortex-mediated processes. The vortex Hamilto-
nian accounts for the kinetic energy associated with quan-
tized circulation:

A Yaf v,.dl

vortex = ER’ 2

(28)
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Where k, is the quantum of circulation for vortex a, I, is
the vortex line, v, represents the superfluid velocity field
and each vortex line contributes circulation k, = mL and
the line integral follows the vortex core (Bewley ot al.,
2008). Vortex interactions with deuterons can modify lo-
cal flow patterns and potentially concentrate deuterons in
regions favorable for fusion.Superfluid helium-4 exhibits
low-energy collective excitations known as phonons and
rotons, which significantly affect its thermodynamic and
transport properties (Castin et al., 2019). These excitations
can interact with deuterons and influence tunneling and
fusion rates by modifying the effective potential landscape
and providing channels for energy exchange (Toennies et
al., 2008). The Hamiltonian describing these quasiparticles
can be written as:

H Ek hew, B:Ek (29)

excitations

Where b and b, are creation and annihilation operators
for phonon/roton modes with momentum k and e, is the
excitation spectrum (Huang and Klein, 1964). Including
this term accounts for dynamic medium effects and energy
dissipation channels. Though helium atoms are neutral,
free or quasi-free electrons can exist transiently in the me-
dium, especially near impurities or interfaces (Mills, 2001).
Their interactions with deuterons and helium atoms can
alter screening effects and modify fusion dynamics. This
term models electron kinetic energy and electron-deuter-
on/helium interactions and is represented as Hejacerons. In
dense superfluid helium, three-body and many-body in-
teractions beyond simple pairwise potentials become sig-
nificant. This term capture correlated scattering events and
collective effects that can influence effective potentials and
coherence properties and is represented as Ha—body- If ex-
ternal electromagnetic fields, pressure gradients, or other
driving forces are applied (for example, in experimental
setups aiming to stimulate fusion), it must be included
to model their influence on particle dynamics and quan-
tum states and is represented as F__. While not strictly
Hamiltonian, effective non- “Hermitian terms or Lindblad
operators may be introduced in open quantum system
approaches to account for decoherence, dissipation, and
thermalization effects within the medium (Braaten et al.,
2017). In view of this, the quantum Hamiltonian term, de-
noted as ﬁqummm, is a composite operator that integrates
several distinct physical and mathematical contributions
to capture the full quantum dynamics of the system, espe-
cially in the context of simulating cold fusion within a su-
perfluid helium medium. Thus, a more complete quantum
Hamiltonian for the system may be expressed as:

ﬁ = H-KL‘N + H-whsrsncs + Hvortex + 'gexcitations + ﬁeleftmns + g{!—body + H-ext +

quantum

Each additional term enriches the model to better reflect
the microscopic physics of superfluid helium and its in-
teraction with deuterons, thereby improving the accu-
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racy of quantum simulations of cold fusion phenomena.
However based on current research and practical consid-
erations in quantum simulation for fusion and complex
many-body systems, it is advisable to restrict the quan-
tum Hamiltonian, ﬁquanmm to the core terms that balance
physical accuracy with computational feasibility and there-
fore for better quantum simulation of cold fusion in su-
perfluid helium, restricting Hqugnmm upto core terms i.e.
Hquantum H!LL".' + H::ohmm;::ﬂ + Hvarte‘\{ > strlkes the beSt
balance between physical fidelity and computational feasi-
bility given current algorithmic and hardware constraints
(Joseph et al.,2023).The quantum tunneling probability
through the Coulomb barrier is foundational for calcu-
lating fusion rates (Makar, 2025). The WKB approxima-
tion provides the theoretical framework for non-constant
barriers (Szalewicz et al., 1989). The tunneling probabil-
ity P, for two deuterons with reduced mass u ==

center-of-mass energy E is :
-
Pioks = €xXp [——f V 2p(Ve (r) — E)dr} (30)

Where h represents reduced Planck constant p the re-
duced mass of the deuteron pair, V. (r) = —, the coulomb
potential, & the elementary charge, & the Vcécuum permlt-
tivity, (r,,73) the classical turning points where V() =

The Gamow energy E; simplifies the exponent:

me~

E, = {m )f ~ 0.978MeV (31)
Thus:

[ee
Pyyp = exp [_\}?] (32)
Atroom temperature, E % 0.039eV, Pypp ™~ e 0% ‘mak-

ing fusion negligible without enhancement. In vacuum at
low energies (e.g., room temperature), this probability is
vanishingly small due to the large Coulomb barrier. How-
ever, in superfluid helium, the Coulomb barrier is effec-
tively reduced by screening effects from the medium. This
introduces a screening energy U ., modifying the effective
potential to Makar (2025):

stf(r) =V:(r) _"U (33)

Where, U,, = , with 4, being the effective screen-
ing length in the superﬂuld hehum medium. The modified
tunneling probablhty becomes:

P exp[ ff J2u(V(r) — (34)

Where 1| and 73 are the new turning points for the screened
potential. Beyond screening, the superfluid helium medi-
um exhibits unique quantum effects that further enhance
fusion probability. The first is quantum coherence among
deuteron pairs mediated by the Bose-Einstein condensate
(BEC) fraction of helium atoms. This coherence allows
constructive interference of tunneling amplitudes, effec-
tively increasing the probability by a factor F_, . which
depends on the BEC fraction f,, . (experimentally around
7-10%) and the strength of coherent coupling g:

sc’

—E) dr]

tunnel
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Feoherence = Exp(ﬁfﬂgf) (35)
The second enhancement arises from quantized vortex
lines in the superfluid helium. These vortices, each carry-
ing a quantum of circulation, create localized regions of
altered flow and phase that can concentrate deuterons and
modify their effective interaction potential. This effect is
captured by an enhancement factor F,,,..., parameter-
ized by a coupling constant:

‘I‘Fz:m'rax = exp (YfBECJ (36)

Combining these effects, the total fusion probability per
collision event is:

PF:J:EUR
Bfssc + ‘r’fasc]

To convert this probability into a fusion rate R, it must be
multiplied by the flux of deuterons and the number den-
sity N of deuterons in the medium (Pines et al., 2020).
Assuming a Maxwell-Boltzmann distribution of deuteron
velocities at temperature T, the fusion rate per unit volume

is (Feng, 1989):

R = nj{ov)

=P X F,

coherence

X F,

2l e
rories = &5 |2 [ \2u(Vc () = U,, — B) dr +

tunnel

(37)

Where o is the fusion cross-section related to the tunnel-
ing probability by:

o(E) = 5(E) (uzien) (38)

with S(E) being the astrophysical S-factor that encapsulates
nuclear reaction specifics beyond Coulomb barrier effects,
and v is the relative velocity of the deuterons (Singh et al.,
2019). The thermal average {ov) is computed over the deu-
teron energy distribution:

(ov) = [~ a(E) v (E)f(E, T)dE (39)

Where f (E, T) is the Maxwell-Boltzmann distribution
(Rowlinson, 2007). Thus, the total fusion rate in super-
fluid helium medium, incorporating quantum tunneling,
screening, coherence, and vortex enhancements, is:

R =n} [ 5(E)(%sion )y (E)F(E, T)dE (40)

This expression accounts for the microscopic quantum
mechanical processes and macroscopic medium effects
that collectively enhance cold fusion rates in superfluid
helium. Building upon the previously established quan-
tum simulation framework for cold fusion in superfluid
helium, the integration of Quantum Monte Carlo (QMC)
methods and Density Functional Theory (DFT) provides
a comprehensive computational approach that combines
the strengths of both methodologies to accurately simu-
late the complex many-body quantum dynamics of this
system (Acioli, 1997; Nakatsukasa et al., 2012; Schunck,
2013; Hirshberg et al.,2019; Kopycinski et al., 2023). The
theoretical framework leverages QMC for exact treatment
of quantum correlations while utilizing DFT to efficiently
handle the electronic structure and medium properties of
superfluid helium. The complete many-body Hamiltonian
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governing the QMC-DFT hybrid simulation system builds
upon the previously derived components while incorpo-
rating explicit treatment of electronic correlations and ex-
change effects:

Heoear = Hyoprr + gd—@Mc +Hyg+ Hyge + j;frrurmmm

total

(41)

The superfluid helium component is described using the
Orsay-Trento density functional, which has been exten-
sively validated for helium systems and properly accounts
for the static response function and phonon-roton disper-
sion (Long and Eloranta, 2021). The Orsay-Trento func-
tional incorporates both condensate and normal fluid
components to accurately represent the limited BEC frac-
tion in helium-4:

Baecorr = [ €1 |00, O0F +Vor ()6, )+ Erc o )| (42)

Where V7 () [p¥5, (r)] is the Orsay-Trento energy den-
sity functional and Ey¢ [pg.(r)] represents the exchange-
correlation contribution that captures many-body effects
in the superfluid.The deuteron dynamics are treated us-
ing quantum Monte Carlo methods, specifically employ-
ing both Variational Monte Carlo (VMC) and Diffusion
Monte Carlo (DMC) techniques to obtain accurate many-
body wavefunctions and energies. The QMC treatment of
deuterons enables exact sampling of quantum correlations
while avoiding the exponential scaling limitations of con-
ventional wavefunction methods (Yang, 2025):
75 (i)

] _ s Np 1‘3;
Hd—QM’f - Ei=1 2my + Hi’nts:'nﬂl

(43)
The VMC component utilizes trial wavefunctions opti-
mized through stochastic reconfiguration techniques,
while DMC provides exact ground-state energies within
the fixed-node approximation. The trial wavefunction for
deuteron pairs incorporates correlation effects and screen-

ing modifications due to the superfluid medium:
ip’rﬂ_ﬂ: [:R] = Hz‘q’._;‘ f[rz'_;u') exp[_azk [:Tk - Rcm:]:] (44)

Where f{( rij) represents the Jastrow correlation factor and
the Gaussian term accounts for confinement effects in the
superfluid (Michelis and Reatto, 1974; Drummond et al.,
2004). The deuteron-deuteron interaction Hamiltonian
combines Coulomb repulsion with nuclear forces, modi-
fied by the screening effects of the superfluid medium de-
termined through DFT calculations of the local dielectric

i<y |:4-‘“'E'ff':?‘]'?'ij T [rij)} (45)

The effective permittivity €e¢¢ (r) is calculated self-con-
sistently using the DFT-derived electron density of the
superfluid, providing position-dependent screening that
enhances tunneling probabilities compared to vacuum
conditions (Smorodin et al., 2017). The deuteron-helium
interaction is treated through a hybrid approach where
DFT calculations provide the electronic structure of he-
lium atoms while QMC handles the quantum correlations

Hfdd =
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in deuteron-helium scattering:

Hy yo = Ez’i}lf dr Vfﬂ!—a (lr; = 7oy, (r) + HED“::'L‘_

(46)

The DFT component V2%, captures the mean-field inter-
action, while B2 includes quantum correlation effects
treated via Monte Carlo sampling. The quantum simula-
tion enhancement term incorporates the previously de-
rived Koopman-von Neumann formalism with additional

QMC and DFT corrections:
Fame

coherence

+ f_}-‘DFT

vortex

(47)

The coherence term utilizes QMC methods to accurately
sample quantum superposition states of deuteron pairs,
while the vortex contribution employs DFT calculations
of the superfluid velocity field and quantized circulation
patterns .Path Integral Monte Carlo (PIMC) methods are
employed to treat finite temperature effects and thermal
fluctuations in the superfluid helium medium (Learn et al.,
2022). The PIMC approach maps the quantum many-body
system onto a classical system of ring polymers, enabling
calculation of thermodynamic properties and tempera-
ture-dependent fusion rates:

o(RR'; B) = (R|e™*%|R)

Hquﬁnrum = HK;:;"F +

(48)

The density matrix is evaluated using the Trotter decom-
position with imaginary time slicing, allowing treatment
of quantum effects at finite temperatures while maintain-
ing computational tractability (Cao et al., 2022). The fu-
sion probability calculation combines the QMC-derived
tunneling wavefunctions with DFT-computed screening
effects. The enhanced tunneling probability incorporates
both electronic screening from DFT and quantum correla-
tion effects from QMC (Biben and Frenkel, 2002; Carlson
et al., 2012; Carlson et al., 2015):

QMC-DFT 2pr |
P e Rexp |21 (2727

fusion (I“) - E}dr} WDME(R)dR (49)

where 5y, (R) is the DMC-optimized many-body wave-
function and V55 (r) is the DFT-calculated effective po-
tential including medium screening (Dalfovo et al., 1995).
The computational algorithm proceeds through iterative
self-consistent cycles: DFT calculations provide the elec-
tronic structure and effective potentials for the superfluid
medium, QMC methods sample the deuteron many-body
wavefunctions and correlation effects and the results are
combined to compute enhanced fusion rates. Variational
optimization of trial wavefunctions using the fixed-node
DMC method ensures systematic improvement of the
nodal structure toward the exact many-body ground state.
Hybrid QM/classical treatments has been incorporated
to handle different length and time scales efficiently, with
QMC/DEFT describing the core fusion region while clas-
sical molecular dynamics treats the extended superfluid
medium. This multiscale approach enables simulation of
realistic system sizes while maintaining quantum accura-
cy in the critical fusion zone. The theoretical framework
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enables systematic investigation of fusion enhancement
mechanisms in superfluid helium through accurate treat-
ment of quantum correlations (QMC), electronic screen-
ing (DFT), medium-mediated effects (hybrid approaches)
and finite temperature dynamics (PIMC). The combina-
tion of these advanced computational methods provides a
comprehensive tool for understanding and predicting cold
fusion phenomena in quantum fluids, bridging the gap be-
tween fundamental quantum mechanics and macroscopic
fusion rates in condensed matter systems. The fusion rate
can be obtained from the enhanced fusion probability
calculated by combining Quantum Monte Carlo (QMC)-
derived tunneling wavefunctions with Density Functional
Theory (DFT)-computed screening effects (equation 49).
The fusion probability provides the microscopic likelihood
that two deuterons will overcome the Coulomb barrier and
fuse under the influence of medium screening and quan-
tum correlations. The fusion cross section relates to the fu-
sion probability by factoring out the energy dependence
and nuclear structure effects encapsulated in the astro-
physical S-factor, S(E):

() =2 Prprion (E) (50)

Where S(E) is obtained either from experimental data or
nuclear reaction models. The relative velocity between two
deuterons at energy E can be given by:

oz
v(E) = \‘\l_

f , where ¢ is the reduced mass of the deuteron
pair. In the superfluid helium medium at temperature T,
the deuterons follow a Maxwell-Boltzmann distribution of
energies. The thermally averaged fusion rate per deuteron
pair can be given by,

{ov) = [ a(E)v(E)f(E, T)dE (51)

Where f(E.T)=—.- "’E-EXP( = 1-) the normal-
. vt o(ggmiz o T . .

ized Maxwell-Boltzmann distribution function and K; is
Boltzmann’s constant (Rowlinson, 2007). Given the deu-
teron number density N, in the superfluid helium medi-
um, the total fusion rate per unit volume is given by:

R = %NE, {av)

1
T

(52)

The factor = avoids double counting pairs. Thus, by nu-
merically evaluating the integral for {gv} using the QMC-
DFT computed fusion probability, P, . (E), it is possible
to obtain the fusion rate R that incorporates both quantum
tunneling enhanced by medium screening and quantum
correlations. This approach provides a direct link between
microscopic quantum simulations and experimentally
measurable fusion rates in the superfluid helium medium.

Simulation Procedure

The simulation procedure outlines the step-by-step com-
putational approach for performing quantum mechanical
simulations of deuteron-deuteron cold fusion in superfluid
helium medium using the hybrid Quantum Monte Carlo
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(QMC) and Density Functional Theory (DFT) framework
with experimentally validated parameters (Anderson and
Jones, 1991; Lewan, 2016; Berlinguette et al., 2019; Ondir
and De, 2021; Mohamed et al., 2023).

Physical Parameters and Real Data

The key physical parameters and real experimental data
that would be used in the present simulation:

1. Fundamental Constants

e Reduced Planck constant: A = 1.055 X 1073 J-s
e Elementary charge: e = 1.602 x 107 C

e Vacuum permittivity: &, = 8.854 x 107! F/m

e Boltzmann constant: Kz = 1.381 x 107= J/K

2. Deuteron Properties

e Mass: m,; = 2.013553 amu = 3.344 x 107 kg
e Binding energy: 2.224 MeV

e Charge radius: 2.128 fmn

o Reduced mass for D-D system: # = —= = 1.007 amu
e Binding energy: 2.224 MeV

e Nuclear spin: ] = 1 (triplet state)

e Magnetic moment: 0.857436

3. Superfluid Helium-4 Properties

6.647 x 107 kg

e Mass: m, = 4.0026 amu
e Lambda transition temperature: T; = 2.17 K
e Liquid helium-4 density: 125 kg/m? at boiling point

o Superfluid density: varies with temperature, reaching
maximum near 0 K

e Density at 0 K: p, = 145 kg/m®

e BEC fraction: fege = 7 — 10% (experimental value)
e s-wave scattering length: ag. = 7.73 nm

e Healing length: & = 0.02 nm

4. Nuclear Reaction Parameters

e D-D S-factor: 5(E) = 52.9 keV - barn

e Gamow energy: E. = 0.978 MeV

e Screening energy in superfluid: U,. = 10 — 90 eV

e Screening length: A, = 0.5 nm

Simulation Setup

The quantum mechanical simulation of deuteron-deuter-
on cold fusion in superfluid helium employs a sophisticat-
ed computational framework combining Quantum Mon-
te Carlo (QMC) and Density Functional Theory (DFT)
methodologies. This hybrid approach provides accurate
treatment of both quantum many-body correlations and
electronic structure effects essential for understanding fu-
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sion enhancement mechanisms in quantum fluid environ-
ments.

1. System Configuration

Simulation box: 100 nm X 100 mm % 100 nm cubic
cell with periodic boundary conditions to minimize
finite-size effects while maintaining computational fea-
sibility.

Deuteron density: Ny = 1.0 X 10**m™ (10 deuter-
ons in simulation box), representing a realistic concen-
tration for experimental cold fusion studies.

i

ii.

Y
EaYy

iii.Grid resolution: 0.1 nm spacing yielding 9992 10?
grid points for DFT calculations, providing adequate
resolution for quantum mechanical wavefunctions
while remaining computationally tractable.

iv. Temperature range: 0.1 K to 300 K, spanning from deep
superfluid regime to room temperature conditions.

2. Step 1: DFT Initialization for Superfluid Helium

Orsay-Trento Functional Implementation: Initialize the
superfluid helium ground state using the validated Orsay-
Trento density functional:

R® 2
Elp]l= [d°r — Vi, (P)1° + Vor [og. ()]
Parameters for Orsay-Trento functional:

rh? -

e Interaction strength: g9y, = T — 163 X 107 - m®
2.18 x 10°% atoms/m?

e Sound velocity: ¢, = 238 m/s

2y

e Bulk density: pg

Computational procedure:
o Initializing uniform helium density, Pz () = po

e Solving Gross-Pitaevskii equation iteratively until con-
vergence (JAE| < 107%))

e Implementing BEC fraction constraint:
= =
1|'!J'H|a (]") = \-'lfBEf ipcmzdsns:tra (T‘] + \l'l 1- fBEC !Pno?'m:zl (]")

e Calculating superfluid velocity field and identify vortex
configurations

The superfluid helium medium was modeled using the Or-
say-Trento density functional within the DFT framework
to accurately represent the helium-4 ground state and its
limited Bose-Einstein condensate fraction of approximate-
ly 7-10%. The helium density and effective potentials were
computed on a three-dimensional grid with 0.1 nm resolu-
tion over a 100 nm cubic simulation cell under periodic
boundary conditions. The Gross-Pitaevskii equation was
solved iteratively until convergence was achieved, ensur-
ing a stable superfluid density profile and capturing vortex
structures relevant to fusion enhancement.

3. Step 2: QMC Wavefunction Optimization
Variational Monte Carlo (VMC) Setup
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Trial wavefunction construction:

Y (R) = quf(_r'aj) exp[—al.(r, — R, )71
VMC parameters:

e Number of walkers: N,,, = 1000

e Equilibration steps: 1000

e Optimization steps: 5000

e Jastrow correlation parameters: optimized via stochastic
reconfiguration

Correlation factors:
_ i)
i"'D

cutoff

e Short - range deuteron - deuteron: flr) = Exp(
with r, = 2.13 fm

¢ Medium-range
Ap =05 nm

e Confinement parameter: & optimized to minimize en-
ergy variance .

Implementation using QMCPACK
Software configuration(Kim et al.2018;Kent et al.,2020)

screening:  exponential at

<gmc method="vmc™>

<parameter name="walkers”>1000</parameter>
<parameter name="steps”>5000</parameter>
<parameter name="warmupSteps >1000</parameter>
<parameter name="blocks”>100</parameter>
<parameter name="timestep”>0.01</parameter>
</qmc>

The deuteron subsystem was treated using Variational
Monte Carlo (VMC) to optimize trial many-body wave-
functions incorporating Jastrow correlation factors that
accounted for short-range nuclear and medium-induced
screening effects. The trial wavefunctions were refined
through stochastic reconfiguration over 5,000 optimiza-
tion steps with 1,000 walkers, implemented in the QMC-
PACK software.

4. Step 3: Diffusion Monte Carlo (DMC) Ground State
DMC Implementation

Fixed-node approximation: VMC-optimized nodal struc-
ture has been used to maintain fermionic antisymmetry
for nuclear wavefunctions.

DMC parameters:

e Time step: T = 0.01 (atomic units)
e Target population: 1000 walkers
e Equilibration time: 1000 t

e Production runs: 5000 t

e Population control: Constant walker number via branch-
ing has been maintained.
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Importance sampling: The walkers have been guided us-
ing optimized trial wavefunction to reduce variance and
improve convergence.

Diffusion Monte Carlo (DMC) simulations were per-
formed using the optimized trial wavefunctions as guid-
ing functions to obtain accurate ground-state energies and
deuteron spatial distributions, employing a time step of
0.01 atomic units and maintaining population control with
1,000 walkers over 5,000 diffusion steps.

5. Step 4: Hybrid QMC-DFT Self-Consistency
Iterative Procedure (Nagai et al., 2020)

1. FT

DFT step: Calculate effective potential fo f
cluding :

(r) in-

V.(r) =

e Coulomb interaction: dme,r

: . ”
e Screening correction: —U,.exp [— E)

e Medium polarization effects from helium density

vET ()

e The walker positions via guided diffusion has been up-
dated.

e The local energies and density distributions has been cal-
culated.

2. QMCstep: Sample deuteron configurationsin

e The statistics for {4 (7)) has been accumulated.

3. Convergence check: |AE| < 107° hartree between it-
erations.

4. Update potentials: The screening based on new
{p4(r))has been recalculated.

The effective screened Coulomb potential between deu-
terons was calculated self-consistently using DFT-derived
electron densities, yielding a screening energy in the range
of 10-90 eV and a screening length of approximately 0.5
nm. This screened potential was incorporated into the
QMC simulations to modify the tunneling barrier accord-
ingly. The enhanced tunneling probability was then com-
puted by integrating the WKB exponent over the effective
screened potential, numerically evaluating the integral
between classical turning points from 1 femtometer to 1
nanometer. Quantum coherence and vortex-mediated en-
hancements were included multiplicatively, with enhance-
ment factors derived from the condensate fraction and
vortex density, yielding a total enhancement factor of ap-
proximately 1.4.

6. Step 5: Enhanced Tunneling Probability Calculation
WKB Integration with Medium Effects

Enhanced fusion probability:

Prusion(E) = Py (E) X Feonarence X Fuortex

o . - -
WKBcalculation: Py, = exp [—5 [ Jzﬂ[:vgﬁ(rj — E)dr

T
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Enhancement factors from real data:

e Coherence enhancement:

'IFCG?HI:"EI:'!CB = exp(ﬁfﬁ'ﬁ'fj =1.22 (JB = 25)
e Vortex enhancement:

Fvorrax = exp(}'rfﬂgfj =1.15 (}" = 18)
e Total enhancement: Frgeq = 1.41

Numerical integration parameters:

e Integration limits: ; = 1 fmtor, =1 nm
o Adaptive quadrature with epsrel = 107

e Energy range: 107% eV to 10° eV

To obtain the macroscopic fusion rate, the fusion cross-
section was calculated from the enhanced tunneling prob-
ability combined with the experimentally measured astro-
physical S-factor for the D-D reaction (approximately 52.9
keV-barn).

7. Step 6: Thermal Averaging and Rate Calculation
Gamow Peak Integration

Thermally averaged reaction rate:

{ov) = [ a(E)v(E)f(E,T)dE

Maxwell-Boltzmann distribution:
P 1 |,'— _i

FIET)= EI(KBT)%.\' E.exp( KBT}

Gamow peak approximation: The integration has been

KgT

)]

-

focused around £, _, = [EG {

Where Epear is the Gamow peak energy (in joules or
electronvolts), Ec is the Gamow energy, defined as
E. = ';‘“;))“ = = ) £, where Z, and Z, are the atomic
numbers Echarges) of the two interacting nuclei, e is the
elementary charge, 1 is the reduced mass of the two nuclei,
h is the reduced Planck constant, £ is the vacuum permit-
tivity, K, is the Boltzmann constant and T is the absolute
temperature of the plasma.

2mz,5.8"

The thermally averaged fusion rate <ov> was computed by
integrating the product of the cross-section, relative veloc-
ity, and Maxwell-Boltzmann energy distribution over en-
ergies from 10 eV to 10 eV, focusing on the Gamow peak
energy range. Numerical quadrature with adaptive step size
ensured high accuracy in the integration. Finally, the total
fusion rate per unit volume was calculated by multiply-
ing <ov> with the square of the deuteron number density
(taken as 1.0 x 10°* m™) and including the standard factor
of one-half to avoid double counting. The simulations were
performed across a temperature range from 0.1 K to 300 K
to capture the temperature dependence of fusion rates in
the superfluid helium medium. The entire computational
workflow was executed on a high-performance computing
cluster with hybrid CPU-GPU nodes, leveraging QMC-
PACK for QMC calculations and custom DFT solvers for
superfluid helium. Parallel scaling tests demonstrated effi-
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cient utilization of over 1,000 cores, with typical simula-
tion times of approximately 1,000 core-hours per tempera-
ture point.

8. Step 7: Validation and Benchmarking

The calculated @(E) has been compared with measured
D-D cross sections from Oxford experiments (Engel and
Goodyear, 1961).

e4KeV:%exp = 9x107° mb , Teare = 1.3 X 107* mb
e 10 KeV : Teuxn = 8 X lu_gmb, Oegre = 2.3 ¥ 107 mb
Systematic uncertainties:

e QMC statistical error: +1-2%

e DFT functional accuracy: 5%

e Finite-size effects: £3%

e Temperature dependence: +10%

Performance Optimization

Computational requirements:

e Memory: ~100 GB for full simulation

e CPU time: ~1000 core-hours per temperature point

e Storage: ~10 TB for complete parameter scan

Parallel scaling: Efficient scaling to 1000+ cores using QM-
CPACK’s hierarchical parallelism.

The quantum mechanical simulation of deuteron-deuteron
cold fusion in the medium of superfluid helium was car-
ried out using a hybrid Quantum Monte Carlo (QMC) and
Density Functional Theory (DFT) approach, incorporat-
ing realistic physical parameters and experimentally vali-
dated data. The results showed a significant enhancement
of the fusion rate compared to vacuum conditions, with
enhancements of up to 10°~10'* times due to combined
screening, quantum coherence, and vortex effects.

These findings provide quantitative support for the feasi-
bility of cold fusion in superfluid helium and demonstrate
the power of hybrid QMC-DFT simulations in capturing
complex quantum many-body phenomena in condensed
matter nuclear science.

Data Analysis

The comprehensive data analysis for the quantum me-
chanical simulation of deuteron-deuteron cold fusion in
superfluid helium involves multiple statistical methods
and error estimation techniques to ensure reliable results
from the hybrid Quantum Monte Carlo (QMC) and Den-
sity Functional Theory (DFT) calculations (Bulusu and
Fournier, 2012). The analysis includes statistical error esti-
mation, systematic uncertainty quantification, correlation
analysis, and validation procedures that transform raw
simulation outputs into scientifically meaningful fusion
rate predictions. Quantum Monte Carlo generates time
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series data for observables such as energies and densities,
which require careful statistical treatment due to correla-
tions between successive Monte Carlo steps (Maestro et
al., 2022). Since data points are not independent, proper
estimation of statistical uncertainties is crucial. Blocking
analysis is used to handle auto correlated data by dividing
the data into blocks of increasing size and calculating the
variance of block averages (Ichibha et al., 2022). For a data
series of N measurements {E }, blocking into blocks of size
B gives block averages (Montanaro, 2015):

—'B)
Ez =(j— J_}B+J_Ei

(53)
The variance of these block averages is given by,

L5z (2% — ()

Ng—1
Where Ng = % is the number of blocks. As block size in-
creases, the variance approaches a plateau when blocks
exceed the autocorrelation time, providing an accurate es-
timate of the statistical error.
The autocorrelation function,
((E(r+ne)—(EVVEC)—(E} D
(B2 1—(E)®

-

2 _ Ng
CT_E. =

j=1

(54)

c(at) = (55)

The integrated autocorrelation time T is given by,
=2+, c(an) (56)

where W is chosen to balance bias and variance. The effec-

tive number of independent samples is N, = - ”H, and
the statistical error in the mean is given by, i
— %
. =
stat JTerr (57)

With @ the variance of individual measurements. Hybrid
error estimation methods combine blocking with tech-
niques such as von Neumann ratio tests and autoregressive
models to provide robust uncertainty estimates across dif-
ferent QMC data lengths (Kennedy and Pendleton, 1991).
For the DFT component, convergence with respect to grid
resolution, basis sets, and exchange-correlation function-
als is analyzed by monitoring the total energy difference
between iterations (Vuckovic et al., 2019):

E= |E:lz+1 _E:'zl =€

With €.5p. typically around 10°® hartree (Song et al,
2022). Functional derivatives such as the chemical poten-
tial #[o(r)] are computed via (Gaiduk and Staroverov,

2010), p[p(r)] = 2 (58)

&plr)
using finite difference methods with adaptive step sizes for
numerical stability. The thermally averaged fusion rate R
is computed by integrating the fusion cross-section o(E),
relative velocity v(E), and Maxwell-Boltzmann distribu-
tion fuz(E.T) :

R = N3 [ o(E) v(E) fiys (B, T)dE

coney

(59)

where N is the deuteron number density. Error propaga-
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tion for R accounts for uncertainties in all input param-
eters x; via (Kuo and Uppuluri, 1983),

of=T(=) a2 +23,

=)

8R &R

i3 cou(xi,x )

™ (60)
Jackknife resamphng est1mates errors by systematically

omitting each data point and recalculating R, with jack-
knife error given by Wu (1986),
-

Tiack — wll(?}zil(g—i - E): (61)
Where R is the rate excluding the i-th point and R is the
mean of all R . Bootstrap resampling complements jack-
knife by generating synthetic datasets through random
sampling with replacement to provide confidence inter-
vals. Systematic uncertainties arise from approximations
such as the fixed-node approximation in DMC, which is
assessed by varying trial wavefunctions and extrapolating
to the complete basis limit. DFT functional dependence is
evaluated by comparing results from different exchange-
correlation functionals and benchmarking against experi-
mental data. Numerical integration accuracy is verified by
refining grids and comparing quadrature methods. Cor-

relation analyses use cross-correlation functions between

observables A and B:
((Ale+ri-{4)) (B (£)-B))
Cyp(7) = - (62)
in order to identify dependencies and inform statistical
independence assumptions. Principal component analysis
reduces dimensionality and identifies dominant variance
modes, improving error estimation efficiency. Tempera-
ture dependence of fusion rates is analyzed using a modi-
fied Arrhenius model (Chung and Green, 2025):

Eerf
= —_— 8,

R(T) Aexp( KBI_) (63)

Where E_ is the effective activation energy accounting

for medium effects. Nonlinear least squares fitting with
weighted residuals extracts parameters and uncertainties
(Venturi and Dektor, 2021). Extrapolation beyond simu-
lated temperatures propagates these uncertainties to pro-
vide confidence intervals (Iliadis et al., 2015). Validation
includes comparison with experimental D-D fusion cross-
section data, internal consistency checks across compu-
tational methods (VMC vs DMC), and systematic con-
vergence studies on computational parameters to ensure
results represent the thermodynamic limit (Aygun, 2020).
Key results include an enhancement factor of approxi-
mately 1.41+0.05 (statistical) +0.12 (systematic) for fusion
rates in superfluid helium compared to vacuum, temper-
ature-dependent cross-sections with 1-2% statistical and
5-10% systematic uncertainties, and screening parameters
U _=45+15eV and screening length 4, = 0.50 = 0.05nm
=0.5020.05nm consistent with helium dielectric properties
(Poluektov,2021) .

Results and Discussion
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The quantum mechanical simulation of deuteron-deuter-
on cold fusion in superfluid helium was successfully con-
ducted using a hybrid Quantum Monte Carlo and Density
Functional Theory approach. The fusion probability was
calculated by integrating Diffusion Monte Carlo optimized
wavefunctions with the effective screened Coulomb poten-
tial obtained from Density Functional Theory calculations,
incorporating quantum correlations, electronic screening,
and medium-specific effects such as quantum coherence
and vortex dynamics in the superfluid helium environ-
ment (fig.7).

The total enhancement factor for fusion probability due to

Deuteron Pair |W]2 in He

En (keV)

Pos (nm)

Figure 7: Quantum Mechanical Wavefunction
Amplitude Contour Plot for Deuteron Pairs in
Superfluid Helium.
these combined effects was approximately 1.41, with a sta-
tistical uncertainty of +0.05 and a systematic uncertainty

of £0.12 (fig.8(a)).
This enhancement factor includes contributions from

Enhancement Factors in He

Enhance Fact.

15

Mechanism

Figure 8 (a): Enhancement factor breakdown showing
individual contributions to fusion enhancement in
superfluid helium.

quantum coherence related to the Bose-Einstein conden-
sate fraction of about 8%, vortex-induced modifications of
the local potential, and electronic screening, which reduc-
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es the Coulomb barrier by approximately 45 electronvolts
with a screening length of about 0.5 nanometers (fig.8(b)).
The enhancement factor heatmap illustrates how fusion

Enhance vs BEC & Vort

Enhance
20

Vort/mm®

10

BEC %

Figure 8 (b): Enhancement Factor Heatmap as Function
of BEC Fraction and Vortex Density.

enhancement varies with both Bose-Einstein condensate
fraction and vortex density, showing that maximum en-
hancement factors approaching 2.0 are achieved at high
BEC fractions and vortex densities. These values are con-
sistent with the known dielectric properties of superfluid
helium. Thermally averaged fusion rates were calculated
over a temperature range from 0.1 Kelvin to 300 Kelvin by
integrating the fusion cross-section, relative velocity, and
Maxwell-Boltzmann energy distribution (fig. 9).

At 0.1 Kelvin, the fusion rate was 1.72x10 reactions per

X Simulated Data Points

Figure 9: Three-dimensional surface plot showing
fusion rate dependence on temperature and deuteron
density.

cubic meter per second, and at the lambda transition tem-
perature of 2.17 Kelvin, it was approximately 1.03x10° re-
actions per cubic meter per second for a deuteron density
of 1.0x10** per cubic meter. The fusion rate increased at
higher temperatures, reaching about 4.54x10? reactions
per cubic meter per second at 300 Kelvin, reflecting the
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interplay between thermal energy and quantum enhance-
ment mechanisms (fig. 10).
The astrophysical S-factor used was consistent with estab-

Fusion Rate Dist. by Phase

RNoemal Fluids (300K) Lambada Transition (217K) Deep Suparfivi (0:1K)

Phass

Figure 10: Distribution of Fusion Rates Across
Different Superfluid Helium Phases.

lished nuclear physics data, ensuring reliable fusion cross-
section estimates (fig. 11).
The Gamow peak energy, representing the most probable

Fusion Cross-Section Validation

® Expoata Calc enhanc

g

Tross-sec (mb)
B

3
T

Energy (keV)

Figure 11: Experimental validation showing dramatic
enhancement of fusion cross-sections predicted for
superfluid helium.

energy for fusion reactions, was determined using stan-
dard formulas incorporating the reduced mass of the deu-
teron pair and the system’s temperature (fig. 12).

Statistical uncertainties from Monte Carlo sampling were

Gamow Peak vs Temp

Epeak (keV)

Temp (K)

Figure 12: Gamow peak energy evolution with
temperature showing cubic root dependence
characteristic of fusion reactions.
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controlled to within 1 to 2 percent, while systematic un-
certainties, arising from the fixed-node approximation in
Diffusion Monte Carlo, the choice of exchange-correlation
functional in Density Functional Theory, and finite-size ef-
fects in the simulation cell, were estimated to be between
5 and 10 percent (fig. 13).

Walker scaling analysis confirmed the expected inverse

Statistical

Uncert %

Figure 13: Uncertainty analysis for quantum
mechanical simulation of cold fusion in superfluid
helium, showing statistical and systematic error
contributions from different computational methods
and approximations.

square root relationship between the number of Monte
Carlo walkers and statistical error, with both Variational
Monte Carlo and Diffusion Monte Carlo methods show-
ing excellent agreement with theoretical predictions and
R-squared values of 1.00 (fig. 14).

The energy convergence analysis demonstrated the stabil-

QMC Walkers vs Error %

©® VMC O DMC - = Trend R:=100

Error (%)

500

Figure 14: Statistical Error vs Walker Number Scaling
for QMC Simulations.

ity of the Diffusion Monte Carlo algorithm, with energy
converging from initial values around -2.40 hartree to a
final value of approximately -2.38 hartree with decreasing
statistical uncertainty (fig. 15).

The simulations demonstrated excellent computational
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DMC Energy Convergence
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Figure 15: DMC Energy Convergence During Monte
Carlo Simulation.

scalability, efficiently utilizing high-performance comput-
ing resources with over one thousand CPU cores. The com-
putational cost breakdown reveals that Diffusion Monte
Carlo calculations require the highest computational re-
sources (400 CPU hours), followed by self-consistent itera-
tions (300 hours), demonstrating the relative computation-
al demands of different simulation components (fig. 16).

The combined effects of electronic screening, quantum coher-

CPU Hours by QMC-DFT Component

CPU Hours

150h

25 o &
et
of ¢

o PPREC

et
opt
e oM

Component

Figure 16: Computational Cost Breakdown for QMC-
DFT Cold Fusion Simulation Components.

ence, and vortex dynamics in superfluid helium enhanced the
cold fusion probability by a factor of about 1.4 compared to vac-
uum conditions, providing a scientifically grounded assessment
of fusion enhancement in quantum fluid environments (fig. 17).
The realistic enhancement factor of approximately 1.4 pro-

Fusion Prob. vs Energy

— Helium Vacuum

Eneray (keV)

Figure 17: Fusion probability comparison between
vacuum and superfluid helium showing consistent
enhancement across energy range.
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vides a scientifically grounded assessment of fusion en-
hancement in quantum fluid environments, which demon-
strates that superfluid helium, through quantum coherence
and screening effects, enables a reduced effective Coulomb
barrier, increasing the probability of fusion (fig. 18).

The ground state energy varies as a function of inter-deu-

D-D Cold Fusion in Superfluid Helium Medium
(Simulation with QMC & DFT)

—— Effective Potential in Superfluid He - 1.0
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Figure 18: D-D cold fusion in superfluid helium vs
vacuum.

terium distance when two deuterium atoms are placed at
varying distances within the superfluid helium matrix (fig.
19).

As expected, DMC yields the lowest energy values, cap-

Energy vs Inter-Deuterium Distance

VMC (QMC - CASINO)
—— DMC (QMC - CASINO)

=17

..... DFT (Quantum ESPRESSO)

| |
= =
© @

Ground State Energy (Hartree)
L
o

-2.1

1 2 3 4 5
Inter-Deuterium Distance (A)

Figure 19: The variation of ground state energy as two
deuterium atoms are placed at varying distances within
the superfluid helium medium.

turing many-body quantum correlations more accurately
than VMC. The DFT results follow a similar trend but sys-
tematically overestimate energy due to the limitations of
exchange-correlation functionals. This confirms the statis-
tical reliability of the trial wavefunction refinement and the
accuracy of the obtained ground state energy. The pair cor-
relation function depicts spatial correlations between deu-
terium atoms in the helium medium, showing structured
behavior due to quantum effects and medium response,
it also represents the likelihood of finding another deute-
rium atom at a distance r from a reference atom (fig. 20).

The presence of periodic peaks indicates short-range order
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Pair Correlation Function of Deuterium in Superfluid Helium

0.9

4
Distance r (A)

6 10

Figure 20: The pair correlation function g(r), showing
the likelihood of finding another deuterium atom at a
distance r from a reference atom.

and significant quantum correlations between particles.
These oscillations reflect the quantum structuring of deu-
terium within the superfluid, which could enhance the
probability of overlap required for cold fusion processes,
highlighting the potential for superfluid helium to serve as
a medium for studying low-energy nuclear reactions.

Conclusion

The present study successfully demonstrates the quan-
tum simulation of deuteron-deuteron (D-D) cold fusion
processes within the medium of superfluid helium using
a hybrid computational framework combining Quan-
tum Monte Carlo (QMC) and Density Functional Theory
(DFT) methods. By leveraging the quantum mechanical
precision of Diffusion Monte Carlo (DMC) and the elec-
tronic structure insights of DFT, the research provides a
first-principles, quantitatively grounded assessment of fu-
sion enhancement mechanisms in a quantum fluid envi-
ronment.The simulations reveal that the interplay between
electronic screening, quantum coherence, and vortex dy-
namics within superfluid helium collectively enhances
the effective fusion probability by an average factor of
1.41£0.05 (stat.) £0.12 (sys.) compared to vacuum con-
ditions. This enhancement arises from a reduction of the
Coulomb barrier by approximately 45eV, a Bose-Einstein
condensate (BEC) fraction of around 8%, and vortex-in-
duced modifications of the local potential landscape. The
heatmap analysis further illustrates that fusion probability
increases with both higher condensate fractions and vortex
densities, with enhancement factors approaching 2.0 un-
der optimal conditions—consistent with the dielectric and
coherence properties of superfluid helium. Thermally av-
eraged fusion rates computed across a broad temperature
range (0.1-300 K) show a gradual increase with tempera-
ture, from 1.72x10° reactions m> s* at 0.1 K to 4.54x102
reactions m~ s at 300 K, indicating that both thermal ac-
tivation and quantum enhancement mechanisms contrib-
ute synergistically to fusion probability. Importantly, the
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results at cryogenic temperatures remain consistent with
known nuclear cross-section data, confirming the physi-
cal realism of the adopted astrophysical S-factor and the
calculated Gamow peak energies. The energy convergence
behavior of the DMC calculations, with final stabilized
ground-state energies around -2.38 Hartree, and the in-
verse square root scaling of Monte Carlo statistical errors
validate the numerical robustness of the approach. The
consistency between Variational and Diffusion Monte Car-
lo results, supported by an R? value of 1.00, demonstrates
high computational accuracy. Furthermore, the pair cor-
relation functions indicate pronounced short-range order
and structured oscillations in the deuterium distribution,
reflecting the presence of strong quantum correlations and
the coherent structuring induced by the superfluid helium
matrix. Such correlations are crucial for enhancing the
spatial overlap probability between reacting nuclei, a key
requirement for facilitating low-energy fusion processes.
From a computational standpoint, the methodology ex-
hibits excellent scalability, efficiently utilizing high-perfor-
mance computing resources across over a thousand CPU
cores, with Diffusion Monte Carlo contributing the most to
total computational cost. This highlights the feasibility of
large-scale, high-accuracy quantum simulations of nuclear
phenomena in condensed quantum media. Overall, the
findings of this research establish that superfluid helium
serves as a promising quantum environment for investigat-
ing and potentially enhancing low-energy nuclear fusion
phenomena. Based on its intrinsic quantum coherence,
high stability, and ability to mediate electronic and vortex-
induced screening effects, superfluid helium provides a
unique medium in which the effective Coulomb barrier is
reduced and quantum tunneling probabilities are measur-
ably increased. While the observed enhancement factor
(~1.4) does not yet approach conditions for sustained or
practical fusion energy production, it represents a quan-
titatively verified and physically consistent advancement
in understanding the role of quantum fluids in mediating
nuclear interactions at ultralow temperatures. The results
bridge the gap between microscopic quantum many-body
physics and macroscopic fusion dynamics, offering a vali-
dated theoretical pathway for further explorations into
quantum-assisted nuclear fusion. Future research direc-
tions include the incorporation of three-body correlations,
dynamic helium field coupling, and time-dependent den-
sity functional methods to capture non-equilibrium effects
and transient tunneling phenomena. Experimental veri-
fication through neutron yield measurements or spectro-
scopic monitoring of superfluid helium under deuterium
loading could further substantiate these computational
predictions. In conclusion, the present study provides a
basic foundation for cold fusion research, demonstrating
that the combination of superfluid quantum coherence,
electronic screening, and vortex-mediated dynamics can
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measurably influence fusion probabilities at cryogenic
temperatures. This establishes a pivotal step toward realis-
tic modeling of low-energy fusion in condensed quantum
media and contributes valuable insights into the potential
of superfluid helium as a quantum catalyst for future fu-
sion energy applications.

Significance

The present study holds significant scientific and tech-
nological importance as it pioneers the first-principles
quantum simulation of cold fusion phenomena within a
superfluid medium, offering a rigorous theoretical frame-
work to explore nuclear fusion under quantum-degenerate
conditions. By integrating Quantum Monte Carlo (QMC)
and Density Functional Theory (DFT) approaches, this re-
search establishes a computationally validated link between
quantum many-body effects in condensed matter systems
and low-energy nuclear fusion processes—a connection
that has remained largely speculative in past studies of cold
fusion. The findings demonstrate that quantum coherence,
electronic screening, and vortex dynamics in superfluid
helium can measurably enhance fusion probabilities by re-
ducing the effective Coulomb barrier and modifying the
local potential environment surrounding deuterons. This
result provides quantitative evidence that quantum fluids,
particularly superfluid helium, can act as natural ampli-
fiers of tunneling-mediated nuclear reactions—a concept
of profound importance for understanding fusion under
non-plasma, low-temperature conditions. From a funda-
mental physics perspective, the research advances the un-
derstanding of how quantum degeneracy and superfluidity
influence nuclear reaction dynamics. The identification
of distinct contributions from Bose-Einstein condensa-
tion, vortex-induced fields, and electronic screening offers
a mechanistic insight into how collective quantum states
can modulate nuclear interaction potentials. This not
only deepens our comprehension of cold fusion mecha-
nisms but also provides a testable theoretical model for
experimental physicists seeking to validate or exploit such
quantum-enhanced environments. Methodologically, the
study showcases the power and reliability of hybrid quan-
tum simulation frameworks for modeling complex nuclear
systems embedded in quantum media. The demonstrated
computational scalability and statistical robustness affirm
that high-accuracy quantum simulations can be extended
to previously inaccessible fusion regimes, bridging nuclear,
condensed matter, and computational physics.In terms of
practical implications, this work lays the groundwork for
the controlled exploration of low-energy nuclear processes
in condensed quantum systems, potentially guiding the
development of novel experimental platforms for studying
fusion at cryogenic temperatures. By providing a physi-
cally consistent enhancement factor (=1.4) and elucidating

85

Quantum Simulation of Cold Fusion in the Medium of Superfluid Helium

the quantum mechanisms underlying it, the study estab-
lishes a realistic and scientifically grounded foundation for
future research aiming to harness quantum-assisted fusion
phenomena. In summary, the significance of this research
lies in its integration of nuclear physics, quantum fluid dy-
namics, and computational simulation to address one of
the most challenging frontiers in modern science—the re-
alization of fusion under non-thermal, quantum-dominat-
ed conditions. The work not only contributes a quantitative
theoretical framework for cold fusion but also opens new
directions for interdisciplinary exploration in quantum
energy research, potentially reshaping how fusion is con-
ceptualized and pursued in the coming decades.
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