Analyzing the Dynamics of Tuberculosis through a Fractional-Order Model
Keywords:
Tuberculosis, Fractional-order model, Mathematical Modeling, Numer ical AnalysisAbstract
Tuberculosis (TB) remains a significant public health challenge worldwide, exacerbated by the complex and persistent nature of Mycobacterium tuberculosis infection. Traditional integer order models provide insight into TB transmission and control but may fall short in capturing the nuances of disease progression and memory effects inherent in biological systems. This study presents a fractional-order mathematical model of TB dynamics to better reflect the complexities of TB infec tion, latency, and progression. Utilizing fractional calculus, the model introduces a novel approach that accounts for memory and hereditary properties, offering a more accurate representation of dis ease transmission and latency. Analytical methods are applied to explore the behavior of the disease dynamics. Numerical simulations validate the model’s effectiveness in describing TB dynamics. The fractional-order TB model has the potential to inform more effective intervention strategies and im prove predictions of long-term outcomes.
References
[1] Okram, M., & Singh, O. M. (2024). Tuberculosis: a narrative review on epidemiology, risks, implications, preventions and treatments. International Journal of Research in Medical Sciences, 12(6), 2172.
[2] Ong, C. W. M., Migliori, G. B., Raviglione, M., MacGregor-Skinner, G., Sotgiu, G., Alffenaar, J. W., ... & Goletti, D. (2020). Epidemic and pandemic viral infections: impact on tuberculosis and the lung: A consensus by the World Association for Infectious Diseases and Immunological Disorders (WAidid), Global Tuberculosis Network (GTN), and members of the European Society of Clini cal Microbiology and Infectious Diseases Study Group for Mycobacterial Infections (ESGMYC). European Respiratory Journal, 56(4).
[3] Mancuso, G., Midiri, A., De Gaetano, S., Ponzo, E., & Biondo, C. (2023). Tackling drug-resistant tuberculosis: new challenges from the old pathogen Mycobacterium tuberculosis. Microorganisms, 11(9), 2277.
[4] Corpuz, J. C. G. (2024). Tuberculosis cases in the Philippines: A new public health crisis?. Journal of Public Health, fdae043.
[5] Lv, H., Zhang, X., Zhang, X., Bai, J., You, S., Li, X., ... & Xu, Y. (2024). Global prevalence and burden of multidrug-resistant tuberculosis from 1990 to 2019. BMC Infectious Diseases, 24(1), 243.
[6] Fors, J., Strydom, N., Fox, W. S., Keizer, R. J., & Savic, R. M. (2020). Mathematical model and tool to explore shorter multi-drug therapy options for active pulmonary tuberculosis. PLoS Computational Biology, 16(8), e1008107.
[7] Wu, Y., Huang, M., Wang, X., Li, Y., Jiang, L.,& Yuan, Y. (2020). The prevention and control of tuberculosis: an analysis based on a tuberculosis dynamic model derived from the cases of Ameri cans. BMC Public Health, 20(1), 1173.
[8] Amilo, D., Kaymakamzade, B., & Hincal, E. (2024). A Fractional-Order Modeling and Sensitivity Analysis in the Investigation of Colorectal Cancer.
[9] Amilo, D., Kaymakamzade, B., Hincal, E., & Hosseini, K. (2024). Modeling Gene Expression via Caputo-Type Fractional-Order Calculus.
[10] Amilo, D., Kaymakamzade, B., & Hincal, E. (2023). A fractional-order mathematical model for lung cancer incorporating integrated therapeutic approaches. Scientific Reports, 13(1), 12426.
[11] Amilo, D., Sadri, K., Kaymakamzade, B., & Hincal, E. (2024). A mathematical model with fractional-order dynamics for the combined treatment of metastatic colorectal cancer. Communica tions in Nonlinear Science and Numerical Simulation, 130, 107756.
[12] Amilo, D., Kaymakamzade, B., & Hnal, E. (2023). A Study on lung cancer using nabla discrete fractional-order model. Mathematica Moravica, 27(2), 55–76.
[13] Bagkur, C., Amilo, D., & Kaymakamzade, B. (2024). A fractional-order model for nosoco mial infection caused by pseudomonas aeruginosa in Northern Cyprus. Computers in Biology and Medicine, 108094.
[14] Amilo, D., Izuchukwu, C., Sadri, K., Yao, H. R., Hincal, E., & Shehu, Y. (2024). A fractional order model for optimizing combination therapy in heterogeneous lung cancer: integrating im munotherapy and targeted therapy to minimize side effects. Scientific Reports, 14(1), 18484.
[15] Sadri, K., Amilo, D., Hosseini, K., Hinal, E., & Seadawy, A. R. (2024). A tau-Gegenbauer spec tral approach for systems of fractional integrodifferential equations with the error analysis. AIMS Math., 9(2), 3850-3880.
[16] Sontakke, B.R., & Shaikh, A.S. (2015). Properties of Caputo operator and its applications to linear fractional differential equations. Int. J. Eng. Pic. Appl., 5(5), 22–27.
[17] Asjad, M.I. (2020). Novel fractional differential operator and its application in fluid dynamics. J. Prime Res. Mathematics, 16(2), 67–79.
[18] Erdlyi, A., Magnus, W., Oberhettinger, F., & Tricomi, F.G. (1955). Higher Transcendental Func tions. Vol. 3, McGraw–Hill, New York, NY, USA.