
Overview
Social, ethical and economical considerations as well as 
technical limitations have constrained the study of physiology 
and pathology directly in humans and higher primates. 
Understanding biology from molecular to organismal level 
has included both expansionist and reductionist approaches.  
The problem has been in sythesizing them together because 
the reductionist methods do not appropriately reflect the 
complex interactions between molecules, tissues, organs, and 
organ systems in vivo.  On the other hand, in silico modeling 
or in vitro reproduction of complex phenotypes is almost 
impossible.  While gross pathology and exploratory studies 
have taught us a lot about normal and abnormal processes, 

microscopic and molecular studies have yielded the finer 
details of the underlying mechanisms as well as how to 
tackle diseases.  Experimental animals have been used as 
surrogates to create human-like systems.  Unlike humans, 
mice and rats can be manipulated by experimentally inducing 
disease, and the diseased tissue can be sampled at various 
stages when alive or post mortem.  In addition, genetically 
modified or transgenic mice can be used for functional 
analysis of gene function(s) in vivo. Such animal models 
have provided important fundamental insights into biological 
processes. Indeed, the slogan “laboratory animals save more 
lives than the emergency telephone number” may not be an 
overstatement (Baenziger et al. 2008).
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Abstract
Laboratory animals have contributed greatly in understanding human physiology and pathology.  However, 
differences in biology do not allow us to definitively interpret the results of experiments in animals. 
Transplanting human cells and tissues into mice has therefore been one of the milestones in humanizing 
laboratory animals. However, this necessitates complete replacement of the mouse system by the human 
system, the most explored of which is the immune system.  But this has not been easy as each phenotypic 
deletion in mice has unraveled the complexity of host (mouse) defense mechanisms and at the same time shed 
more light on the development of the human immune system.  Because humanized immune mice lack the 
armory to reject xenotransplants, they are being extensively used to implant and study other human systems, 
including infectious diseases. This review summarizes the history of humanizing the mouse, the technical 
advancements, the knowledge gained in the process, their use as well as the outlook in this fascinating and 
rapidly advancing field.
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However, direct translation of the results from rodents to 
humans is intricate. Although similarities in genome, protein 
structure and function, and physiology are very high, humans 
and mice differ substantially. Thus one of the greatest reasons 
for major triumphs in mice often being lost in translational 
research is that mice are not men (Mestas and Hughes 
2004, Steinman and Mellman 2004; Lin, 2008). Moreover, 
the phenotype of each inbred strain differs (Diwan et al. 
1986; Zumbach et al. 2001), leading to potentially differing 
interpretations of results. Further, the mouse immune system 
rejects any transplant which is used study the biology of the 
implanted cell, tissue or organ.  This has led to the discovery 
and engineering of several strains of mice which now serve as 
the basis to reconstitute human biological systems.  However, 
the progress has been slow because ablation of a specific arm 
of the immune system leaves another arm at freedom to attack 
the transplant. Based on the knowledge accumulated over the 
years, humanized mice have been generated to investigate 
human hematopoiesis, innate and adaptive immunity, autoim-
munity, infectious diseases, cancer biology, stem cell biology 
and regenerative medicine.  However, further improvements 
are needed to achieve completely humanized mice.

A crash course in immunology
In order to understand the history of humanized mouse, it is 
essential to understand the biology of the immune system.  The 
lymphoid organs can be divided into primary and peripheral. 
The primary lymphoid organs – bone marrow (BM) and 
thymus – generate and educate lymphocytes.  While all 
lymphocytes originate in the BM, T and B cells mature in the 
thymus and the BM, respectively. The peripheral lymphoid 
organs – mainly spleen and lymph nodes (LN) – initiate and 
sustain specific responses. The cells of the immune system 
include granulocytes (neutrophils, basophils, eosinophils), 
lymphocytes, monocyte-macrophages, dendritic cells (DCs), 
natural killer (NK) cells and mast cells.

Immunity can be classified into innate and adaptive.  Innate 
immunity is inborn and not specific to any pathogen.  It is 
initiated by the activation of a group of receptors, including 
toll-like receptors (TLRs), by molecular patterns frequently 
encountered on pathogens.  A variety of soluble factors, 
including lysozyme, interferons (IFNs), complements, 
collectins and acute phase proteins as well as phagocytes and 
NK cells contribute to innate immunity. Complements, which 
are activated either by certain pathogen molecules or via 
antibodies bound to pathogens, function by killing pathogens 
directly or by recruiting and/or aiding in the function of 
phagocytes that then clear the pathogens. IFN-α, β or γ block 
viral replication and also activate cells of both innate and 
adaptive immunity. NK cells act by recognizing aberrant cells 
and responding rapidly with the release of cytolytic granules 
and cytokines.

Adaptive immunity is initiated only upon exposure to antigen, 
and is characterized by specificity, diversity, memory, and 
self/non-self recognition.  The specificity of each T and B cell 
is determined during maturation in the thymus or BM even 
before its contact with antigen. By a combination of multiple 
gene rearrangement and mutations, adaptive immunity 

generates an enormous diversity to recognize an infinite 
variety of antigens. This generation of diversity in B and T 
cell receptors (TCR) is mediated by recombination activating 
gene 1 and 2 (enciphered by Rag1 and Rag2 genes) as well 
as other proteins. Exposure to antigen activates T and B cells, 
and expands the population of cells with a given antigenic 
specificity, and produces effector (immediately functional) 
and memory (long-lasting) cells. Unlike B cells which 
recognize antigen directly, T cells can only recognize antigen 
bound to major histocompatibility complex (MHC) molecules 
(human leukocyte antigen or HLA in humans), and presented 
by antigen presenting cells (APC).  There are two classical 
MHC molecules: class I, expressed by nearly all nucleated 
cells of vertebrate species, and class II, expressed only by 
specialized APC (B cells, monocytes, macrophages, DCs).  
Both are heterodimeric, class I containing a heavy chain and 
β2-microglobulin (β2m), class II made of α and β chains. T 
cells are educated to recognize non-self antigens presented by 
self MHC molecules.  

Antibodies, or immunoglobulins (Ig’s), of various types and 
subtypes, are the effector molecules of B cells.  IgM is the 
first Ig produced upon exposure to an antigen (a primary 
response), as well as in neonates. IgG is the most abundant Ig 
in the serum, appears after IgM, is predominant in secondary 
or booster responses, and is produced by a phenomenon called 
class switching. Antibodies carry out their functions by inhib-
iting the invasion of pathogens, or by activating complements, 
or by aiding macrophages and NK cells to engulf or destroy 
pathogens.  

There are two major subpopulations of T cells: helper (Th) and 
cytotoxic (Tc), which carry the surface molecules CD4 and 
CD8, and are hence typically referred to as CD4+ and CD8+ 
T cells, respectively. Stimulated Th cells secrete cytokines 
which activate various cells, including B cells, Tc cells, 
macrophages, and other immune cells. Th cells are further 
divided into Th1 and Th2, which originate from the common 
precursor Th0, depending on the initial signals and cytokine 
environment. Typically, Th1 and Th2 cells polarize immunity 
towards cell-mediated and antibody responses, respectively. 
The Tc cells exhibit cytotoxic activity mediated through the 
exocytosis of granules containing granzyme and perforin, and 
inhibit intracellular pathogens via the secretion of IFN-γ, thus 
playing a vital role in monitoring and eliminating aberrant 
cells, such as virus-infected cells, tumor cells, and cells of a 
foreign tissue graft. The other important T cell subpopulation 
is the regulatory T cell (Treg), which acts in controlling 
immune responses by regulating various pathways. NK cells 
function like Tc cells but are a part of innate immunity. NK 
cells express two distinct families of receptors: the activating 
receptors and the inhibitory receptors, belonging to one of 
the CD94/NKG2, Ly49, killer-cell Ig-like receptor (KIR), or 
leukocyte immunoglobulin-like receptor (LIR) families.  In 
general, the most important inhibitory signal for NK cells is 
the presence of MHC class I molecules.  Lack or absence of 
MHC class I molecules is the most important reason for NK 
cell activation, and mice lacking β2m have NK cell deficiency 
as they lack education during NK cell development.

All the cells of the immune system derive from the same 
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precursor cells, the hematopoietic stem cells (HSC), in the 
BM.  HSCs are a heterogeneous population of cells with 
long-term and short-term regeneration capacities and differ-
ential repopulation kinetcs.  In vivo, they are mostly found in 
the BM, but can be isolated from several fetal tissues (liver, 
spleen, aorta, and gonads), umbilical cord blood, placenta, 
peripheral blood as well as adult tissues like skin.  The HSCs 
can be defined by the cell surface expression of specific 
markers, including CD34, and the absence of other markers, 
including CD38.  Contact with stromal cells and soluble 
mediators secreted by them are necessary for HSCs to differ-
entiate. Two major progenitor lines, myeloid and lymphoid, 
generate the hematopoietic cells. The myeloid progenitor 
undergoes thrombopoiesis (platelets), erythropoiesis (eryth-
rocytes), granulopoiesis (granulocytes), monocytopoiesis 
(monocyte-macrophages, DCs) and differentiation into mast 
cells. Granulocytes are produced in increased numbers and 
migrate from blood to sites of infection or inflammation. 
Macrophages and DCs act as the major initiators of specific 
immunity.

The lymphoid progenitor produces T, B, and NK cells. T 
lymphopoiesis occurs in the thymus and absolutely requires 
contact with thymic stromal cells and the subsequent signal 
transduction events.  The T cells then pass through a series 
of steps involving no, overlapping or exclusive expression 
of CD4 and CD8, during which, TCRs undergo gene 
rearrangement.  The T cells, each being clonal but collectively 
bearing a vast array of specificities, come in contact with self 
MHC molecules and undergo selection and retention to react 
to non-self antigen (i.e., self-reactive T cells are deleted).  
The T cells can belong to one of the αβ (conventional) or γδ 
type based on the kind of TCR that they express.  Other types 
include NKT and regulatory T cells.  

B lymphopoiesis occurs in the BM, whose niche of stromal 
cells, extracellular matrix and cytokines is essential for the 
process.  B cell development also goes through a series of 
well defined steps which can be recognized by the surface 
expression of particular markers.  Further maturation of B 
cells occurs in spleen and lymph nodes. Similar to T cells, 
B cells rearrange their Ig genes to generate antibodies with a 
vast variety of specificities.  These are then selected specifi-
cally on contacting the antigen in secondary lymphoid organs.

The identity of human NK cell precursors, their location, and 
factors involved in development are not as well defined. Fetal 
NK cell precursors arise in the liver, thymus, BM, and LN, 
and the BM is the major location of NK cell development in 
adults. Different HSC cell populations can generate mature 
NK cells in the presence of stromal cells and cytokines, and 
transcription factors play a critical role in the development of 
NK cells. 

The generation, maturation, differentiation and effector 
functions of various immune cells are initiated or regulated 
by a variety of soluble mediators.  The principle ones are the 
colony stimulating factors (CSF), interleukins (IL), IFNs, 
and tumor necrosis factor (TNF). CSFs stimulate HSCs to 
differentiate into various blood cell lineages, and include 
macrophage, granulocyte and granulocyte-macrophage 

CSFs as well as erythropoietin and thrombopoietin. Among 
the IFNs, only IFN-γ is secreted exclusively by cells of the 
immune system.  It protects cells by initiating molecular 
antiviral pathways, and along with TNF-α, an inflammatory 
cytokine, it is involved in activation and regulation of innate 
and adaptive immune cells.

Interleukins are a group of >30 cytokines which regulate 
the generation, differentiation and function of immune cells. 
IL-1, produced by many cells, particularly macrophages and 
epithelial cells, performs multiple immune and non-immune 
functions, including the initiation and regulation of acute 
inflammation.  IL-2 is a T cell growth factor, and in synergy 
with IL-15, it induces and regulates T and NK cell activation, 
proliferation and function. IL-3 and IL-7 are mostly produced 
by stromal cells and promote commitment and differentiation 
of myeloid and lymphoid lineages, respespectively. IL-4 
and IL-13 induce Th0 cells to differentiate into Th2 cells, 
and their action is further supported by IL-10, a pleiotrophic 
immune regulator. IL-6 has multiple effects, the principal of 
which is end stage B cell differentiation. IL-8 is a neutrophil 
chemotactic factor. IL-9 supports IL-2- and IL-4-independent 
growth of Th cells.  IL-11 supports megakaryopoiesis and 
osteoclast activation.  IL-12, produced by APCs upon antigen 
stimulation, polarizes Th0 cells to differentiate into Th1 cells, 
which in turn secrete IFN-γ.  IL-17, along with IL-1 and 
TNF-α, mediates delayed type and inflammatory reactions, 
is produced by Th type 17 (Th17) cells. IL-17, IL-21, IL-22 
and IL-23 control the differentiation and function of Th17 
cells. IL-10 and TNF-α are the major effectors of immune 
regulation mediated by Treg cells.

The interleukins function by binding mostly unique, and 
sometimes shared, cell surface receptors, many of which have 
oligomeric components.  The IL-2 receptor (IL2R) common 
γ-chain (IL2Rγc), is a common receptor subunit used by 
IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21, and is indispensable 
for high-affinity ligand binding and signaling of all these 
cytokines. Knocking out IL2Rγc therefore cause profound 
immunodeficiency.  The deficiencies in the immune system 
can be generated by knocking out genes encoding immune 
effector molecules like granzyme and perforin B or specific 
cytokines or CSFs.  These immunodeficient mice have played 
an important role in the study of in vivo function of human 
cells and tissues.

Humanization of mice: the genesis (or 
transgenesis) and refinement
The “humanized mouse” is one in which human proteins 
are transgenically expressed or human tissue is transplanted 
(Nomura et al. 2008; Pearson et al. 2008). Transgenesis can 
be used to (a) study immune responses, e.g., identification of 
antigenic epitopes presented by HLA molecules, (b) study 
infectious diseases specific to humans through the expression 
of virus-specific receptors, or by knocking out genes encoding 
IFNs or their receptors, or TLRs, and (c) validate and further 
evaluate autoimmune and inflammatory diseases. Study of 
several diseases, including those caused by hepatitis C, human 
corona, dengue and other viruses, as well as rheumatoid 
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arthritis, spondylitis, diabetes, encephalomyelitis etc. has 
been facilitated by these mice. Alternatively, engraftment of 
immunodeficient mice with human cells and tissues permits 
investigation of the development and function of these tissues 
in vivo, and the study of diseases.

Implantation of human cells and tissues (humanization) started 
with athymic nude mice, which lack both T and B cell functions 
(Segre et al. 1995), and other immunodeficient mice, either 
individually or in combination. However, initial attempts to 
engraft human hematopoietic cells were not successful. The 
breakthrough was the discovery of CB17-scid mice (Bosma 
et al. 1983), which contain a spontaneous mutation in the 
DNA-dependent protein kinase gene Prkdc (protein kinase, 
DNA activated, catalytic polypeptide), which is involved in 
the DNA double-strand repair and in the rearrangements of 
TCR and Ig gene segments (Blunt et al. 1995, Kirchgessner 
et al. 1995; Miller et al. 1995). Consequently, the mice lack 
T and B cell progenitors, and are unable to reject grafted 
cells or tissues. Rag1 and Rag2 mutations also result in a 
similar phenotype (Mombaerts et al. 1992; Shinkai et al. 
1992). Later, it was demonstrated that human fetal tissues and 
peripheral blood mononuclear cells (PBMC) could engraft to 
produce human hematopoietic cells in these mice (McCune et 
al. 1988; Mosier et al. 1988). 

The Scid, Rag1 or Rag2 mice, however, retain innate 
immunity, posing a significant barrier to acceptance of the 
graft, especially of hematopoietic origin (Christianson et al. 
1996).  The major reason is the high level of host NK cell 
activity, to deplete which, antibodies to asialoGM1 were used 
unsuccessfully as this also targets human NK and activated 
CD8+ T cells and macrophages present in the graft inoculum 
(Habu et al. 1981; Yoshino et al. 2000). On the other hand, 
IL-2 receptor β-specific antibodies, which target murine, and 
not human, NK cells, are a better option (Tanaka et al. 1993). 
Other approaches have targeted neutrophils with anti-Gr1 
antibodies, and macrophages with liposome-encapsulated 
clodronate (Pearson et al. 2008).  Genetic attempts to reduce 
innate immunity have included combining scid mutation with 
macrophage abnormalities, reduction in complement activity 
or defects in NK cell function, e.g., generation of NOD 
(non-obese diabetic)-scid mice (Lowry et al. 1996; Pflumio 
et al. 1996; Shultz et al. 1995; van der Loo et al. 1998). 
Efforts to further decrease innate immunity have included 
targeted mutation in β2m (Christianson et al. 1997; Zijlstra 
et al. 1989), perforin (Kagi et al. 1994; Shultz et al. 2003) or 
granzyme B (Shresta et al. 1995) genes, leading to deficiency 
or reduced toxicity of NK cells. 

An obstacle to the development of human hematopoietic 
cell functions is the lack of cross-reactivity of many mouse 
hormones, growth factors, and cytokines for the development, 
survival, and function of these cells (Auffray et al. 1994; 
Uze et al. 1990). In addition, many required human-specific 
factors are produced by nonhematopoietic stromal cells not 
present in the inoculum. Exogenous factors important for the 
engraftment, homing, and differentiation of human HSC as 
well as the function or regulation of the differentiated cells 
have been used in an attempt to overcome these obstacles 
(Pearson et al. 2008; Chen et al. 2009). Alternate approaches 

have included transgenic expression (Bock et al. 1995; 
Nicolini et al. 2004) or manipulating the human HSC inoculum 
ex vivo, especially with cocktails containing multiple human 
cytokines (Pearson et al. 2008). The latter approach has been 
hampered by the difficulty in achieving ex vivo expansion 
of human CD34+ HSC without loss of their capacity to 
repopulate stem and progenitor cells in vivo (Sorrentino, 
2004). Another approach is to use lineage-specific differen-
tiation cytokines to drive human stem and progenitor cells ex 
vivo (Ishikawa et al. 2005; van Hensbergen et al. 2006). One 
more method is to co-inject HSC with human mesenchymal 
stem cells (MSC), somatic stem cells, or cytokine-transduced 
stromal cells to provide a stromal environment (Ramasamy et 
al. 2007; Ringden et al. 2006; Pearson et al. 2008).

Other obstacles in the first generation immunodeficient mice 
were the the development of murine T and B cells on aging 
(referred to as ‘leakiness’), high occurrence of thymomas and 
hence short life-span, and the inability to generate human T 
cells (Bosma 1992; Custer et al. 1985; Ito et al. 2008a; Pearson 
et al. 2008; Shultz et al. 2005). The most recent breakthrough 
has been the development of mice carrying a mutation in the 
IL2Rγ chain (Il2rg or Il2rgc) gene, leading to severe impair-
ments in innate and adaptive immunity, including comple-
ments, and differentiation and function of APCs (Cao et al. 
1995; DiSanto et al. 1995; Ohbo et al. 1996).  Combining 
these with NOD/Shi-scid or NOD/LtSz-scid phenotype has 
resulted in NOG and NOD/LtSz-scid IL2rg mice, respectively, 
leading to extreme immunodeficiency derived from the three 
parental strains of mice: (a) reduced innate immunity derived 
from the NOD strain, (b) lack of functional T and B cells due 
to the scid mutation, and (c) NK cell, DC, and other unknown 
deficiencies resulting from inactivation of the IL-2Rγ gene.  

Lymphoid organs, including thymus and LNs, in both NOG 
and NOD/LtSz-scid IL2rg null mice are immature, atrophic 
and rudimentary. NOG mice can live as long as conventional 
inbred mice under strict specific pathogen-free conditions 
(Pearson et al. 2008) whereas half of the NOD/LtSz-scid 
IL2rg null mice die within one year (Shultz et al. 2003). 
The incidence of thymoma in NOG mice is much lower than 
that in NOD/LtSz-scid IL2rg null mice (Ito et al. 2008a; 
Prochazka et al. 1992).  Similarly, little leakiness is observed 
in NOD/Shi-scid mice, with no leakiness at all in NOG mice 
(Ito et al. 2008a).  These mice show fairly complete human 
immune systems, including thymocytes and peripheral mature 
T and B cells, myeloid cells, myeloid and plasmacytoid DCs, 
platelets, and erythrocytes (Ito et al. 2002; Shultz et al. 2005; 
Traggiai et al. 2004). T cells that develop in these mice have 
a diverse TCR repertoire and direct antigen-specific IgM and 
IgG responses after immunization with T-dependent antigens 
(Shultz et al. 2007) in newborn and adult recipients, and by 
different routes of injection (Ito et al. 2008a). Therefore, these 
mice are closest to being “humanized.”

Applications of humanized mice
Hematopoiesis
Transplantations of immunodeficient mice are the most 
reliable methods to evaluate stages of human hematopoiesis 
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and the function of human HSCs (Shultz et al. 1995; 
Larochelle et al. 1996). However, despite their ability to 
produce all mature lineages (Galy et al. 1995; Yahata et al. 
2006), HSCs have limited self-renewal capacity in this setting 
(Ema et al. 2005), possibly due to the lack of a special niche 
(Ando et al. 2008). Stem cell niches and key molecules which 
regulate niche function have been identified in mice (Arai 
et al. 2004; Calvi et al. 2003; Kiel et al. 2005; Sugiyama et 
al. 2005; Zhang et al. 2003), but this may not translate to 
humans.  In vitro, MSCs can give rise to cells that produce 
a number of cytokines and extracellular matrix proteins, and 
express cell adhesion molecules, all of which contribute to 
the hematopoietic microenvironment (HME) (Conget and 
Minguell, 1999; Majumdar et al. 1998; Pittenger et al. 1999). 
However, little is known about their in vivo phenotypic and 
functional characteristics. Although MSCs accelerate the 
hematopoietic recovery of cotransplanted human HSCs (Koc 
et al. 2000; Noort et al. 2002), and donor MSCs may exist in 
recipient BM (Bensidhoum et al. 2004) and reconstitute HME 
(Muguruma et al. 2006), there is no concrete evidence that the 
transplanted MSCs indeed engraft and function directly

Self-renewal, multilineage differentiation, frequency, surface 
marker expression, homing, hierarchy, and dynamic behavior 
have been demonstrated in scid mouse repopulation assays 
(Bhatia et al. 1997, Guenechea et al. 2001; McKenzie et al. 
2006; Peled et al. 1999). However, in NOD-scid mice, CD34+ 
cells appear to reconstitute only B-lymphoid and myeloid cells 
and not T cells, although it can be enhanced by exogenous 
addition of human IL-7 (Hiramatsu et al. 2003; Shultz et 
al. 2005). On the other hand, NOD-scid/β2m−/− or RAG2 
−/−γc−/− mice demonstrate human T cell development and 
functionality (Hiramatsu et al. 2003; Ishikawa et al. 2005; 
Shultz et al. 2005; Traggiai et al. 2004; Yahata et al. 2002). 
A lymphoid-like structure develops in the spleen and contains 
human macrophages and DCs (Watanabe et al. 2007), but 
follicular DCs are not observed (Ito et al. 2008a). T cell areas 
and B cell follicles are observed in the spleen, and B cells 
differentiate first, followed by development of T cells (Ito et 
al. 2008a). The mice produce antigen-specific IgM, but not 
much IgG, even with multiple immunizations (Traggiai et al. 
2004; Legrand et al. 2006), possibly due to the overwhelming 
repopulation of B1 type B cells (Matsumura et al. 2003), 
which are known to produce mainly IgM (Kipps, 1989). 

Human T cells generated in these transplanted mice include a 
fairly normal ratio of CD4+ and CD8+ cells with broad TCR 
diversity, regulatory and γδ cells (Ito et al. 2008a). Mature T 
cells exit the thymus and home to secondary lymphoid organs, 
and stages of T cells are consistent with T cell development in 
humans (Hiramatsu et al. 2003, Matsumura et al. 2003, Yahata 
et al. 2002). However, human T cells are educated by mouse 
thymic stroma in these mice. In addition, myeloid lineage 
cells are not well generated: erythrocytes, neutrophils and 
platelets are too few in number, although some fully matured 
erythrocytes can be observed in newborn NOD/LtSz-scid 
IL2rg null mice (Ishikawa et al. 2005; Nakamura et al. 2006).

As far as NK cell development is concerned, even though 
differentiated human NK cells arising from the graft express 
most of the cell surface antigens and activation functions 

found with fresh human NK cells (Huntington and Di Santo 
,2008), inhibitory receptors and their MHC ligands (Anfossi 
et al. 2006; Yokoyama and Kim, 2006) are absent.  Another 
factor to consider is the unavailability of human IL-7 and 
IL-15, which are required for NK cell generation and survival 
(Kennedy et al. 2000; Huntington and Di Santo, 2008; 
Vossehenrich et al. 2006).

Adaptive immunity
Initial studies to induce human antibody production in 
immunodeficient mice implanted with human PBMC (Abedi 
et al. 1992; Mosier et al. 1988; Sandhu et al. 1994) were 
unsuccessful because of graft versus-host disease (GVHD) 
(Ito et al. 2008b). GVHD was reducely greatly by decreasing 
the number of engrafted PBL, but antigen-specific antibodies 
were almost undetectable (Sandhu et al. 1994). In NOD-scid 
or NOD-scid/β2m−/− or NOG mice, the developed human 
CD4+ or CD8+ T cells express mature T cell markers and 
produce cytokines when stimulated with ionophores or 
superantigens, or via TCR ligation (Saito et al. 2002; Yeoman 
et al. 1993). However, spenic T cells from immunized mice 
lack the ability to produce IL-2 or proliferate. Further, 
although serum IgM and IgG levels are high, the level of 
antigen-specific IgG is extremely low (Ishikawa et al. 2005; 
Ito et al. 2008b). This rudimentary adaptive immunity is 
presumably because human T cells are positively selected 
by the murine MHC in the thymus of these mice (Ishikawa 
et al. 2008). To overcome the impediment, one can express 
human MHC transgenically (Faulkner et al. 1998; Friese et 
al. 2006) or engraft human lymphoid tissues (e.g., embryonic 
thymus) to direct the selection of human T cells. Indeed, when 
adult LNs or embryonic liver, thymus, or skin are engrafted 
into NOG mice which are then immunized with antigen, 
human immune cells proliferate and are activated efficiently 
with given antigens (Carballido et al. 2000; Ishikawa et al. 
2008). In addition, in NOD-scid-IL2Rγ null mice, significant 
amounts of IgG and IgM specific to T-dependent antigen 
are detectable, suggesting functionality and effective class 
switching (Ishikawa et al. 2008). Recent studies also show 
the generation of functional T cell subsets specific to a viral 
pathogen (Jaiswal et al. 2009; Shultz et al. 2010). Of great 
clinical significance is the ability to easily generate completely 
human monoclonal antibodies for therapeutic use (Becker et 
al. 2010).

Infectious Disease
Humanized mice are very useful in the investigation of 
human-specific infectious diseases, including viral infec-
tions caused by human immunodeficiency, herpes (human 
cytomegalovirus, Epstein-Barr virus), hanta, Chikungunya, 
hepatitis C, dengue and other viruses, as well as parasites 
such as Plasmodium. Scid mice coimplanted with human fetal 
thymus and liver tissues show high susceptibility to human 
immunodeficiency virus type 1 (HIV-1) infection (Aldrovandi 
et al. 1993; Namikawa et al. 1988), and can be used to assess 
efficacy of anti-HIV compounds (McCune et al. 1990; Rabin 
et al. 1996). However, direct injection of virus into the implant 
is required because of the low numbers of circulating CD4+ 
T cells, and no antiviral immune response is observed.  Scid 
mice injected with PBMC from healthy adults can also be 
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used (Mosier et al. 1991; Nakata et al. 2005), but these mice 
develop GVHD (Sandhu et al. 1995), and both T cell phenotype 
and coreceptor usage by HIV-1 do not reflect that in humans 
(Mosier et al. 1993; Nakata et al. 2005).  Nevertheless, some 
immune responses are induced in these mice (Gorantla et al. 
2005). Further, MHC-restricted anti-HIV-1 T cell responses 
can be elicited by using autologous skin that contains tissue 
DC (Delhem et al. 1998). Similarly, inactivated HIV-1-
pulsed, human monocyte-derived DC (MDDC) can elicit 
partially protective anti-HIV-1 antibody production (Santini 
et al. 2000). The lack of a suitable HME in these mice can 
be overcome by transferring PBMC together with inactivated 
HIV-1-pulsed autologous MDDC directly into the mouse 
spleen (Yoshida et al. 2003). This reduces excessive GVHD, 
produces larger yields of human T cells, elicits a protective T 
cell immunity, and the sera from the immunized mice contain 
a soluble HIV-1 suppressive factor produced by human 
antigen-specific CD4+ T cells (Yoshida et al. 2005).

The HIV-1 replication occurs at high levels and the virus 
persists for a long time without any GVHD in the human 
hematopoietic cell reconstituted NOD/Shi-scid mice 
(Koyanagi et al. 1997a; 1997b).  NOG (Nakata et al. 
2005; Watanabe et al. 2007) and Rag2 null Il2rg scid mice 
(Baenziger et al. 2006; Gorantla et al. 2007; Ince et al. 2010; 
Sun et al. 2007) have long-lasting infection of human cells 
by HIV-1 as well as HIV-specific human immune responses. 
Plasma viral RNA and antigen load, stabilization of viremia, 
cell tropism, quasispecies generation, CD4+ T cell depletion 
and sometimes syncytium formation all recapitulate what 
happens in humans, including late-stage disease. However, no 
robust IgG or T cell responses are detected, dampening the 
excitement about testing vaccines and antivirals (Koyanagi et 
al. 2008).

The NOG mice are susceptible to infection with Epstein-Barr 
virus (EBV), a causal agent of epithelial carcinomas and B 
cell lymphomas, and human T-lymphotropic virus type I 
(HTLV-I), which causes adult T-cell leukemia/lymphoma 
(ATL).  EBV DNA can be detected in the peripheral blood and 
spleen cells, EBV+ B lymphoblastoid cells can be isolated 
from NOG mice, and specific immunity can be elicited 
(Melkus et al. 2006, Mosier et al. 1989; Shultz et al. 2010).  
The NOG mice develop clinical signs following inoculation 
of ATL cells, with massive infiltration of cells in various 
organs (Dewan et al. 2006; Imada et al. 1995), providing a 
model for testing targets for ATL therapy (Dewan et al. 2003; 
Dewan et al. 2006; Mori et al. 1999).  

Immunodeficient mice can also be used to reproduce the 
pathogenic process and clinical manifestations of disease, 
especially in the case of agents which do not cause any 
disease in laboratory animals. For example, immunodeficient 
mice expressing HLA molecules and lacking endogenous 
MHC class I molecules, are able to produce symptoms of 
Lassa fever.  Further, the exacerbation of disease following 
depletion of human T cells revealed the hitherto unknown 
possibility of immunopathology in this disease (Flatz et al. 
2010).  Work with dengue virus has also shown recapitulation 
of human-like disease and genotype-dependent severity 
(Bente et al. 2005; Mota and Rico-Hesse, 2009) as well as 

specific antibody and T cell responses (Jaiswal et al. 2009). 
Other examples include symptoms of paralysis induced by 
poliovirus infection (Horie et al. 1994; Ito et al. 2002) and 
induction of streptococcal impetigo (Scaramuzzino et al. 
2000).

Cancer
Immunodeficient mice have been used to study cancer 
biology for over three decades (Giovanella and Fogh, 1985; 
Shultz et al. 2007), but the early strains (nude and scid) could 
only support a limited number of tumors (Friese et al. 2006; 
Hudson et al. 1998). The development of NOD-scid or NOD/
Ltz-scid IL2rg mice has permitted the study of many primary 
human lymphomas and leukemias as well as liver metastatic 
models (Dewan et al. 2004; Dewan et al. 2005; Ishikawa et al. 
2007; Suemizu et al. 2007). 

Hematogenous metastasis models, which mimic events that 
occur after cells enter the blood, are useful to understand 
mechanisms of human gastrointestinal, hepatic and pulmonary 
cancers (Nakamura and Suemizu, 2008). Several models of 
liver metastasis have been established in nude mice (Bresalier 
et al. 1987; Nomura et al. 2002), but it is unlikely that such 
a large number (> 106) of cells would enter the liver simul-
taneously and form metastatic foci in patients (Nakamura 
and Suemizu, 2008). The incidences of liver metastases in 
NOG mice are very high and reproducible, and the lesions are 
dose dependent over a wide range of inoculum, but are better 
produced by the elimination of NK cells (Nakamura and 
Suemizu, 2008). Lymphatic metastasis models are difficult 
to develop as the cancers need to first invade the lymphatic 
vessels and metastasize to regional LNs, whose structures are 
not developed in immunodefieicnt mice. On the other hand, 
dissemination in body cavities, a late event of malignancy, 
is much easier to develop, but it gives limited information 
for targeting therapy for early-stage cancer (Nakamura and 
Suemizu, 2008). Several human melanoma cell lines are 
reported to metastasize in nude mice (Cornil et al. 1989; 
Iliopoulos et al. 1989), albeit at low rates. On the other hand, 
metastasis is high in NOG and NOD/Shi-scid mice (Nakamura 
and Suemizu, 2008).

The concept of tumor stem cells, small number of cells with the 
capacity to self-renew and differentiate to give rise to tumor 
(Shultz et al. 2007), has also been validated with humanized 
mice (Passague et al. 2003; Reya et al. 2001; Warner et al. 
2004) for myeloma, and breast, brain and pancreatic cancers 
(Al-Hajj et al. 2003, Li et al. 2007, Pilarski and Belch, 2002; 
Singh et al. 2004). This concept could be critical in treating 
early stage cancers, rather than targeting reduction of tumor 
mass (Nakamura and Suemizu, 2008). Molecular mecha-
nisms of carcinogenesis have also been explored with these 
and transgenic mice (Mitsumori et al. 1997; Nakamura and 
Suemizu, 2008).

Stem Cells and Regenerative Medicine
The scid mice have been used extensively as models for 
human stem cell transplant (Greiner et al. 1998). BM cells 
possess the capacity to generate hepatocytes, hematopoietic 
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cells, epithelial cells, cardiomyocytes as well as functional 
pancreatic beta cells (Camargo et al. 2004; Fujino et al. 2007; 
Harris et al. 2004; Hess et al. 2003; Ianus et al. 2003; Ishikawa 
et al. 2006; Ishikawa et al. 2008; Krause et al. 2001; Ma et 
al. 2006; Petersen et al. 1999; Wang et al. 2005). Several 
investigators have also reported the differentiative capacity of 
human MSCs in vivo (Ishikawa et al. 2008; Sato et al. 1999; 
Toma et al. 2002). Other studies include reconstitution of 
human endometrium, resulting in induction of human sexual 
hormone-dependent menstrual cycle (Masuda et al. 2007; 
Matsuura-Sawada et al. 2005), and therapeutic evaluation of 
thrombopoietics (Nakamura et al. 2006). Recognition that 
transdifferentiation and/or cell fusion of transplanted HSC 
also occurs in damaged tissues has led to intense investigation 
in this area (Ishikawa et al. 2008; Prockop et al. 2003; Shultz 
et al. 2007).

Autoimmunity
The study of autoimmune diseases has benefited extensively 
by animal models, where, the genetic basis for the disease can 
be identified, the genome can be altered, and therapies can 
readily be tested without ethical concerns (Pearson et al. 2008). 
Humanized mice have been used for the study of autoimmune 
type 1 diabetes, thyroiditis, and rheumatoid arthritis (Shultz 
et al. 2007). In diabetes, PBMC from diabetic individuals 
adoptively transferred to CB17-scid mice led to the detection 
of autoantibodies to islet components, but no infiltration or 
beta cell destruction (Petersen et al. 1993). In studies of the 
adoptive transfer of human T cell clones with specificities to 
islet autoantigens into NOD-scid mice, infiltration, but not 
islet cell destruction was detected (van Halteren et al. 2005). 
The use of newer models based on the IL2rg null mutation 
and transgenic expression of human HLA molecules should 
permit the direct study of human autoreactive T cells in vivo.

Drug metabolism and pharmacology
Metabolism of pharmacological compounds is mainly 
mediated by the liver, whose enzymes, including cytochrome 
P450, display tremendous heterogeneity as well as species-
specificity. Transgenic immunodeficient mice in which 
endogenous hepatocytes are depleted through genetic altera-
tions causing hepatocyte damage and human hepatocytes are 
transplanted to repopulate the liver (Katoh and Yokoi, 2007; 
Meuleman et al. 2005; Strom et al. 2010) serve as excellent 
models to study receptor specificity, metabolism, toxicity 
and excretion (Cheung and Gonzalez, 2008; Kamimura et al. 
2010; Yoshizato and Tateno, 2009).

The road ahead
There are three broad limitations in humanized mice: (a) 
many human-specific molecules are absent, (b) remaining 
innate immune mechanisms present obstacles to engraftment, 
and (c) the architecture of the lymphoid system remains 
undeveloped (Ito et al. 2008a; Pearson et al. 2008).  These 
can be forfended by (a) the introduction of human genes that 
code for growth or differentiation factors, (b) the depletion 
of macrophages, DCs, mast cells, neutrophils, etc., or their 
differentiation factors, and (c) the introduction of HLA genes 
(Ito et al. 2008a). 

The expression of human-specific genes, especially the HLA 
genes (Camacho et al. 2004), is of great importance for 
thymic selection. However, the expteme polymorphism of 
HLA means that multiple HLA genes may need to be intro-
duced, by using, for example, artificial chromosomes (Chen 
et al. 2009; Kuriowa et al. 2002).  Additional molecules such 
as cytokines and growth factors should facilitate the devel-
opment, differentiation, and survival of a functional human 
immune system. Genes related to inflammatory responses 
and allergic reactions, e.g., IL-4 and IL-5, may be useful in 
developing disease models (Wills-Karp, 1999).

Both genetic approaches and exogenous administration of 
reagents can be used to further depress innate immunity. 
Better engraftment has already been achieved through the 
ablation of remaining cells, either partially or completely, by 
various techniques (Heyman et al. 1989; Jung et al. 2002; 
Kamogawa et al. 1993; Saito et al. 2001; Santini et al. 1998). 
For example, transgenic expression of simian diphtheria 
toxic receptor can selectively deplete DCs, macrophages, and 
other cells in combination with exogenous administration of 
diphtheria toxin (Bennett et al. 2005; Duffield et al. 2005; 
Jung et al. 2002; Matsumura et al. 2004), to which mouse 
cells are relatively insensitive (Cha et al. 2003).

Poor secondary lymphoid organ development is another 
concern in humanized mice. Appropriate lymphoid archi-
tecture requires interaction of follicular DCs with lympho-
cytes and other nonlymphoid cells for full development (Fu 
et al. 1997a; 1997b). Engraftment of human stromal cells, 
artificial thymic stroma or biocompatible scaffolding may 
facilitate restoration of the lymphoid structure (Poznansky et 
al. 2000; Suematsu and Watanabe, 2004). In addition, trans-
duction of BM or thymic stromal cells with factors that are 
needed for human hematopoiesis or lymphocyte development 
may prove useful (Brenner et al. 2004). Additional molecules, 
such as adhesion and homing molecules expressed on tissues 
in the host, may overcome some of the issues associated with 
homing of human immune cells. The genes for lymphotoxin-
related molecules and chemokines that are necessary for 
reconstruction of human secondary lymphoid organs may 
also be targets for introduction (Fu et al. 1997b; Suemetsu 
and Watanabe, 2004).

Distant metastasis of malignant neoplasms consists of 
entrapment in vessels, invasion of the basement membrane, 
destruction of the vasculature, and entry into blood or lymph 
(Nakamura and Suemezu, 2008). Metastatic models only 
reflect late events, i.e., after adhesion or entrapment in organs. 
Models for initial steps or local invasion mechanisms at the 
primary lesion of the cancer must be developed (Nakamura 
and Suemizu, 2008).  Further, developments in in vivo 
imaging techniques could help in the study of events as they 
happen (Masuda et al. 2008).

Recent advances have allowed us to identify genes responsible 
for self-renewal of stem cells (Seita et al. 2007; Yamazaki 
et al. 2007), and their introduction into mice may make it 
possible to maintain human stem cells for a long time. As 
far as stem cells and regenerative medicine are concerned, 
there is a clear need for targeting research into replacement 
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of tissues constituting organs or areas of extensive loss.  In 
addition, inflammatory and autoimmune disorders, which 
involve immunological disturbances, need to be addressed 
separately as both regenerative approaches and normalization 
of immune system may be required.

One other issue that needs to be addressed is the husbandry 
of immunodeficient mice. Infections with microbes including 
mouse hepatitis virus and Staphylococcus aureus in nude 
mice and Pneumocystis carinii (P. carinii) in scid mice are 
a constant problem (Nomura et al. 2008). Ordinary rearing 
environment can cause mortality in NOG mice. For example, 
contamination of transplated human tumors with Pseudomonas 
aeruginosa and spread to the rearing environment via drinking 
water, researchers, or caretakers has been observed (Nomura 
et al. 2008). Indeed, nude and scid mice show resistance to 
P. aeruginosa and P. pneumotropica but NOD-scid and NOG 
mice die (Nomura et al. 2008). In addition, the intestinal 
flora, e.g., E. coli, of NOG mice has been found to change 
because of stress caused by transport or changes in rearing 
temperature (Nomura et al. 2008). These incidents confirm 
that higher-level control, e.g., germ-free breeding techniques 
and rearing facilities, is indispensable for the generation and 
maintenance of extremely immunodeficient mice (Nomura et 
al. 2008). 

Conclusions
The ability to experimentally manipulate in small animal 
models each incremental step in complex human biological 
processes offers great promise for rapid advances. Humanized 
mice having human cells, tissues, or organs, should facilitate 
the study of human disease pathogenesis and help develop 
therapeutics and prophylactics. While there is no alternative 
to the accuracy of information obtained from human clinical 
trials, these mice should allow derivation of valuable 
preclinical information, and substantially reduce the cost 
and time associated with extensive clinical trials. Humanized 
mice also provide a platform to attempt novel interventions 
in regenerative medicine and cancer treatment before their 
application to the clinic. 
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