BLOOD DATING BASED ON HAEMOGLOBIN DERIVATIVES

Authors

  • Bindiya Goel Amity School of Applied Sciences, Amity University,Gurugram, Haryana,India
  • Bhuvnesh Yadav Amity School of Applied Sciences, Amity University,Gurugram, Haryana,India

Keywords:

Forensic, Bloodstain, Haemoglobin, Aging, Oxyhaemoglobin, Met-haemoglobin

Abstract

The age determination of bloodstain on a crime scene is significant to determine the exact time since the crime must have taken place. Many techniques have been developed to estimate the age of the bloodstain. In this review paper, various new techniques have been discussed and compared on the basis of convenience, reliability and result accuracy with relation to the data of estimated age v/s actual age on the basis of the haemoglobin components, i.e. Oxyhaemoglobin, Met-haemoglobin and Hemichrome. Five most reliable techniques have been considered for the comparative analysis, i.e. Visible Reflectance Spectroscopy with Chemometric Methods, Hyperspectral Imaging, Reflectance Spectroscopy with Microspectrophotometer and Pre-Processing, Diffused Reflectance Spectroscopy and HPLC. The kinetics related to the degradation of haemoglobin to its derivatives has been discussed. The article includes the error percentage for these techniques with their merits and demerits in their utilization in the field of forensic science. 

References

Edelman G, Leeuwen TGV, Aalders MC. Hyperspectral imaging for the age estimation of blood stains at the

crime scene. Forensic Science International [Internet]. 2012;223(1-3):72–7. Available from: https:// www.sciencedirect.com/science/article/pii/ S0379073812003660

Inoue H, Takabe F, Iwasa M, Maeno Y, Seko Y. A new marker for estimation of bloodstain age by high performance liquid chromatography. Forensic Science International [Internet]. 1992;57(1):17–27. Available from: https://www.sciencedirect.com/science/article/ pii/037907389290041T

Fujita Y, Tsuchiya K, Abe S, Takiguchi Y, Kubo S-I, Sakurai H. Estimation of the age of human bloodstains by electron paramagnetic resonance spectroscopy: Long-term controlled experiment on the effects of environmental factors. Forensic Science International [Internet]. 2005;152(1):39–43. Available from: https:// www.sciencedirect.com/science/article/pii/ S037907380500160X

Bauer M, Polzin S, Patzelt D. Quantification of RNA degradation by semi-quantitative duplex and competitive RT-PCR: a possible indicator of the age of bloodstains? Forensic Science International [Internet]. 2003;138(1-3):94–103. Available from: https:/ /www.sciencedirect.com/science/article/pii/ S037907380300392X

Strasser S, Zink A, Kada G, Hinterdorfer P, Peschel O, Heckl WM, et al. Age determination of blood spots in forensic medicine by force spectroscopy. Forensic Science International [Internet]. 2007;170(1):8–14. Available from: https://www.sciencedirect.com/ science/article/pii/S0379073806005512

Zhang Y, Wang Q, Li B, Wang Z, Li C, Yao Y, et al. Changes in Attenuated Total Reflection Fourier Transform Infrared Spectra as Blood Dries Out. Journal of Forensic Sciences [Internet]. 2016;62(3):761–7. Available from: https:// onlinelibrary.wiley.com/doi/abs/10.1111/1556- 4029.13324

Bremmer RH, Nadort A, Leeuwen TGV, Gemert MJV, Aalders MC. Age estimation of blood stains by hemoglobin derivative determination using reflectance spectroscopy. Forensic Science International [Internet]. 2011;206(1-3):166–71. Available from: https:/ /www.sciencedirect.com/science/article/pii/ S037907381000383X

Shine SM, Suhling K, Beavil A, Daniel B, Frascione N. The applicability of fluorescence lifetime to determine the time since the deposition of biological stains. Analytical Methods [Internet]. 2017;9(13):2007–13. Available from: https:// pubs.rsc.org/en/content/articlelanding/2017/ay/ c6ay03099h/unauth#!divAbstract

Edelman G, Manti V, Ruth SMV, Leeuwen TV, Aalders

M. Identification and age estimation of blood stains on colored backgrounds by near infrared spectroscopy. Forensic Science International [Internet]. 2012;220(1-3):239–44. Available from: https:/ /www.sciencedirect.com/science/article/pii/ S0379073812001338

Hanson EK, Ballantyne J. A Blue Spectral Shift of the Hemoglobin Soret Band Correlates with the Age (Time Since Deposition) of Dried Bloodstains. PLoS ONE [Internet]. 2010;5(9). Available from: https:// journals.plos.org/plosone/article?id=10.1371/ journal.pone.0012830

Kind S, Patterson D, Owen G. Estimation of the age of dried blood stains by a spectrophotometric method. Forensic Science [Internet]. 1972;1(1):27–54. Available from: https://www.sciencedirect.com/science/article/ pii/030094327290146X

Mauk MR, Mauk AG. Interaction between cytochrome b5 and human methemoglobin. Biochemistry [Internet]. 1982;21(19):4730–4. Available from: https:/ /pubs.acs.org/doi/abs/10.1021/bi00262a032

Bremmer RH, Bruin DMD, Joode MD, Buma WJ, Leeuwen TGV, Aalders MCG. Biphasic Oxidation of Oxy-Hemoglobin in Bloodstains. PLoS ONE [Internet]. 2011;6(7). Available from: https://journals.plos.org/ plosone/article?id=10.1371/journal.pone.0021845

Sun H, Dong Y, Zhang P, Meng Y, Wen W, Li N, et al. Accurate Age Estimation of Bloodstains Based on Visible Reflectance Spectroscopy and Chemometrics Methods. IEEE Photonics Journal [Internet]. 2017;9(1):1–14. Available from: https:// ieeexplore.ieee.org/abstract/document/7814193

Li B, Beveridge P, O’Hare WT, Islam M. The estimation of the age of a blood stain using reflectance spectroscopy with a microspectrophotometer, spectral pre-processing and linear discriminant analysis. Forensic Science International [Internet]. 2011; Available from: https://www.sciencedirect.com/ science/article/pii/S0379073811002817

Edelman GJ, Roos M, Bolck A, Aalders MC. Practical Implementation of Blood Stain Age Estimation Using Spectroscopy. IEEE Journal of Selected Topics in Quantum Electronics [Internet]. 2016;22(3):415–21. Available from: https://ieeexplore.ieee.org/abstract/ document/7422679

Li B, Beveridge P, Ohare WT, Islam M. The age estimation of blood stains up to 30days old using visible wavelength hyperspectral image analysis and linear discriminant analysis. Science & Justice [Internet]. 2013;53(3):270–7. Available from: https:// www.sciencedirect.com/science/article/abs/pii/ S1355030613000464

Zadora G, Men¿yk A. In the pursuit of the holy grail of forensic science – Spectroscopic studies on the estimation of time since deposition of bloodstains. TrAC Trends in Analytical Chemistry [Internet]. 2018;105:137–65. Available from: https:// www.sciencedirect.com/science/article/abs/pii/ S0165993618300657

Sikirzhytskaya A, Sikirzhytski V, Mclaughlin G, Lednev IK. Forensic Identification of Blood in the Presence of Contaminations Using Raman Microspectroscopy Coupled with Advanced Statistics: Effect of Sand, Dust, and Soil. Journal of Forensic Sciences [Internet]. 2013;58(5):1141–8. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/1556- 4029.12248

Published

2020-06-30

How to Cite

BLOOD DATING BASED ON HAEMOGLOBIN DERIVATIVES . (2020). Journal of Forensic Medicine & Toxicology, 37(1), 9–13. Retrieved from https://acspublisher.com/journals/index.php/jfmt/article/view/17251