Evaluation of Trichoderma isolates for their potential biosorption of copper (Cu) and iron (Fe) in Malnad (hilly) region of Karnataka state

Authors

  • Sagar N Department of Plant Pathology, University of Agricultural and Horticultural Sciences, Shivamogga, Karnataka State-577204
  • Gangadhara B Naik Department of Plant Pathology, University of Agricultural and Horticultural Sciences, Shivamogga, Karnataka State-577204
  • Naveesh Y B Department of Plant Pathology, University of Agricultural and Horticultural Sciences, Shivamogga, Karnataka State-577204
  • Suresh Patil Department of Plant Pathology, University of Agricultural and Horticultural Sciences, Shivamogga, Karnataka State-577204
  • Manjunath K Naik Department of Plant Pathology, University of Agricultural and Horticultural Sciences, Shivamogga, Karnataka State-577204

DOI:

https://doi.org/10.48165/jefa.2024.19.02.32

Keywords:

Trichoderma, biosorption, iron (Fe), copper (Cu), genetic diversity.

Abstract

The growing copper (Cu) and iron (Fe) toxic levels in the soils and the demand for environmentally safe, cost effective methods for reclamation metal toxic soils has been major priority in the Malnad (hilly) regions of Karnataka state. The present investigation was carried out using five best performing Trichoderma isolates against fusarium and sclerotium for their tolerance and biosorption levels of Cu and Fe. All the five Trichoderma isolates tested for their tolerance to Cu and Fe levels showed maximum growth at all concentrations. However, their biosorption levels are varied, atomic absorption spectrophotometer (AAS) analysis revealed that Trichoderma (Tr)-22 isolate absorbed higher concentrations Cu (4.10 ppm) and Fe (13.26 ppm) in dry mycelia from the total supplied Cu (6 ppm) and Fe (40 ppm). In a pot culture study, the maximum mean colony forming units (CFU’s) was recorded with Tr-22 at all the concentrations of Cu (4, 6 and 8 ppm) and Fe (30, 40 and 50 ppm) amended to the soil medium, followed by Tr-14 isolate. Phylogenitic analysis of tef 1 gene of Trichoderma isolates revealed that all the isolates clustered together with Tr-22 and Tr-29 are showed more genetic relatedness, isolate Tr-14 separated out into another sub-cluster.

Downloads

Download data is not yet available.

References

Ahmed M and Kibret M. 2013. Recent trends in microbial biosorption of heavy meatals: a review. Biochem. Mol. Biol. 1:19-26. Doi: 10.12966/bmb.06.02.2013.

Ali H., Khan E., Ilahi I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem. 2019;2019 doi: 10.1155/2019/6730305.

Alloway, B. J. (2013). “Heavy metals and metalloids as micronutrients for plants and animals,” in Heavy Metals in Soils (Whiteknights: Springer), 195–209.

Amin F, Razdan V K, Mohiddin F A, Bhat F A and Saba Banday. 2010. Potential of Trichoderma species as biocontrol agents of soil borne fungal propagules. Journal of Phytology. 2(10): 38-41.

Anand P, Isar J, Saran S and Saxena R K. 2006. Bioaccumulation of copper by Trichoderma viride. Bioresource Technology. 97: 1018-1025.

Arif N, Yadav V, Singh S, Singh S, Ahmad P, Mishra RK, Sharma S, Tripathi DK, Dubey NK and Chauhan DK (2016) Influence of High and Low Levels of Plant-Beneficial Heavy Metal Ions on Plant Growth and Development. Front. Environ. Sci. 4:69. doi: 10.3389/fenvs.2016.00069.

Arora, A., Sairam, R. K., and Srivastava, G. C. (2002). Oxidative stress and antioxidative system in plants. Curr. Sci. 82, 1227–1238.

Ayad F, Matallah-Boutiba A, Rouane-Hacene O, Bouderbala M and Boutiba Z. 2018. Tolerence of Trichoderma spp. to heavy metals and its antifungal activity in Algerian marine environment. Journal of Pure and applied Microbilogy. 12 (2): 855-870.

Bale J S, Van Lenteren J C and Bigler. 2008. Biological control and sustainable food production. Philos. Trans. R. Soc. B Biol. Sci. 363: 761-776. Doi: 10.1098/retb.2007.2182.

Barrett b I P, Moran V C, Bigler F and Lenteren J C. 2018. The ststus of biological control and recommendations for improving uptake for the future. Biocontrology. 63: 155-167.

Benjamin E O and Wesseler J H H, 2016. A socioeconomic analysis of biocontrol in integrated pest management: a review of the effects of uncertainty, Irreversibility and flexibility. NJAS Wageningen J. Life Sci. 77: 53-60. Doi: 10.1016/j.njan.2016.03.022.

Blaylock, M. J., and Huang, J. W. (2000). “Phytoextraction of metals,” in Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment, 53–70.

Chin N.P. Environmental toxins: Physical, social, and emotional. Breastfeed. Med. 2010; 5:223–224. doi: 10.1089/bfm.2010.0050.

Coelho E, Reis T A, Cotrim M, Mullan T K and Correa B. 2020. Resistant fungi isolated from contaminated uranium mine in Brazil shows a high capacity to uptake uranium from water. Chemosphere 248: 126068. Doi: 10.1016/j.chemosphere.2020.126068.

Connolly E L and Guerinot M L, 2002. Minireview: Iron stress in plants. Genome Biology, 3(8). http://genomebiology.com/2002/3/8/reviews/1024.1.

Debbi A., Boureghda H, Monte E and Hermosa R. 2018. Distribution and genetic variability of Fusarium oxysporum associated with tomato disease in Algeria and a biocontrol strategy with indigenous Trichoderma spp. Frontiers in Microbiology. 9: 282. Doi: 10.3389/fmicb.2018.00282.

Dhankhar R and Hooda A. 2011. Fungal biosorption- an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environ. Technol. 32: 467-491. Doi: 10.1080/09593330.2011.572922.

Dusengemungu L, Kasali G, Gwanama C and Ouma K O. 2020. Recent advances in biosorption of copper and cobalt by filamentous fingi. Frontiers in Microbiology. 11: 582016. Doi: 10.3389/fmicb.2020.582016.

Edgar R C, 2004. MUSCLE. Multiple sequence alignment with high accuracy and high throughput. Nucleic acids Res. 32: 1792-1797.

Elad Y, Chet I, Henis Y (1982). Degradation of plant pathogenic fungi by Trichoderma harzianum. Can J. Microbiol. 28:719-725.

Forster J W C. 2003. Biosorbent for Metal ions. CRC Press.

Gad, N. (2012). Role and importance of cobalt nutrition on groundnut (Arachis hypogaea) production. World Appl. Sci. J. 20, 359–367. doi: 10.5829/idosi.wasj.2012.20.03.2819

Hermosa M R, Keck E, Chamorro I, Rubio B, Sanz L, Vizcaino J A, Grondona I and Monte E. 2004. Genetic diversity shown in Trichoderma biocontrol isolates. Mycologicla Reseach.108: 897-906. Doi: 10.1017/s0953756204000358.

Hussein H, Ibrahim S F, Kandeel K and Moawad H. 2004. Biosorption of heavy metals from waste water using Pseudomonas sp. Electron J. Biotechnol. 7: 45-53. Doi: 10.2225/vol7-issue1-fulltex-2.

Iron, Manganese and Copper. Soil Sci. Soc. Am. J., 42: 421-428.

Iskandar N L, Zainudin N A I M and Tan S G. 2011. Tolerence and biosorption of coller (Cu) and lead (Pb) by filamentous fingi isolated from a freshwater ecosystem. Journal of Environmental Sciences. 23 (5): 824-830.

Kareem S, Adeogun A and Omeike S. 2014. Biosorption studies for the removal of ferrous ion from aqueous solution by Aspergillus terreus and Trichoderma viride: Kinetic, themodynamic and isothermal parameters. Aqua. 63 (1): 66-75. Doi: 10.2166/aqua.2013.109.

Kim SK, Park C B, Koo Y M and Yun H S. 2003. Bisorption of cadmium and copper ions by Trichoderma reesei RUT C30. Journal of Industrial and Engineering chemistry. 9: 403-406.

Kumar M and Ashraf S. 2017. Role of Trichoderma spp. as a biocontrol agent of fungal plant pathogen. In: Kumar V, Kumar M, Sharma S, Prasad R (eds.) Probiotics and Plant Health. Springer, Singapore. http://doi.org./10.1007/978-981-10-3473-2_23

Kumar S, Stecher, G, Li M, Knayaz C, and Tamura K (2018). MEGA X: molecular evolutionary genetic analysis across computing platforms. Mol. Biol. Evol. 35: 1547-1549.

Kumar V and Dwivedi S K. 2021. Bioremediation mechanism and potential of copper by actively growing fungus Trichoderma lixii CR700 isolated form electroplating wastewater. J of Environmental Management. 277: 111370.

Ladi E, Shukla N, Bohra, Tiwari A K and Kumar J. 2020. Copper tolerant Tricoderma asperellum increases bio-efficacy of copper against Phytophthora infestanns in dual combination. Phytoparasitica. 48: 357-370.

Lewis, S., Donkin, M. E., and Depledge, M. H. (2001). Hsp70 expression in Enteromorphaintestinalis (Chlorophyta) exposed to environmental stressors. Aquat. Toxicol. 51, 277–291. doi: 10.1016/S0166-445X (00)00119-3.

Li X L and Yao Y J. 2005. Revision of the taxonomic position of the Phoenix 9 Mushroom. Mycotaxon. 2005. 91:61-73.

Mohammadi L, Malvajerdi M S, Rahdar and Kyzas G Z. 2022. Optimization of cadmium ions biosorption onto Trichoderma fungi. Biointerface Research in Applied Chemistry. 12 (3): 3316-3331.

Mohammadian E, Ahari A B, Arzanlou, Oustan S and Khazaei S H. 2017. Tolerance to heavy metals in filamentous fingi isolated form contaminated mining soils in the Zanjan Province, Iran. Chemosphere. 185:290-296. http://doi.org./10.1016/j.chemosphere.2017.07.022

Mohnish Pichhode, Kumar Nikhil (2015) “Effect of Copper Mining Dust on the Soil and Vegetation in India: A Critical Review,” International Journal of Modern Sciences and Engineering Technology (IJMSET), vol. 2, pp. 73- 76.

Mukhopadhyay R and Kumar D. 2020. Trichoderma: beneficial antifungal agent and insights into its mechanism of biocontrol potential. Egyptian journal of Biological Pest Control. 30: 133.

Nagajyoti, P. C., Lee, K. D., and Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: a review. Environ. Chem. Lett. 8, 199–216. doi: 10.1007/s10311-010-0297-8.

Narendrula-Kotha R and Nkongolo K K. 2017. Bacterial and fungal community structure and diversity in a mining region under long-term metal exposure revealed by metagenomics sequencing. Ecol. Genet. Genom. 2: 13-24. Doi: 10.1016/j.egg. 2016..11.001.

Perez T E J, Camacho L V, Perez O S, Rodriguez M M and Sepulveda J G. 2020. Tolerance to oxidative stress caused by copper (Cu) in Trichoderma asperellum to. Biocatalysis and Agricultural Biotechology. 29:101783. https://doi.org/10.1016/j.cab.2020.101783.

Petrovic J J, Danilovic G, Curcic N, Milinkovic M, Stosic N, Pankovic and Raicevic V. 2014. Copper tolerance of Trichoderma species. Arch Biol. Sci. Belgrade. 66 (1): 137-142. Doi:10.2298/ABS1401137J.

Poli, A., Salerno, A., Laezza, G., et al. (2009) Heavy me- tal resistance of some thermophiles: Potential use of α- amylase from Anoxybacillusamylolyticusas a microbial enzymatic bioassay. Resource Microbiology, 160, 99- 106. doi: 10.1016/j.resmic.2008.10.012

Rush T A, Shrestha H K, Meena M G, Spangler M K, Ellis J C, Labbe J L and Abraham P E. 2021. Bioprospecting Trichoderma: A systemic roadmap to screen genomics and natural products of biocontrol applcaitons. Frontiers in Fungal Biology: Fungi-Plant Interactions. 2: 716511. Doi: 10.3389/ffunb.2021.716511.

Saha DK and Pan S. 2019. Qualitative evaluation of some specific media of Trichoderma and Gliocladium and their possible modifications. J. Mycopath Res. 34: 7-13.

Siddiquee S, Aishah S N, Azad S A, Shafawati S N and Naher L. 2013. Tolerance and biosorption capacity of Zn2+, Pb2+, Ni2+, and Cu2+ by filamentous fungi (Trichoderma harzianum, T. aureoviride and T. virens).

Silva R N, Monteiro V N, Steindorff, Gomes E V, Noronha E F and Ulhoa C J. 2019. Trichoderma/pathogen/plant interaction in pre-harvest food security. Fungal Biology. 123 (8): 565-583. http://doi.org/10.1016/j.funbio.2019.06.10.

Skoneczny D, Oskiera M, Szczech M and Bartoszewski G. 2015. Genetic diversity if Trichoderma atroviride strains collected in Poland and identification of loci useful in detection of within-species diversity. Folia Microbiologica. 60 (4): 297-307. Doi: 10.1007/s12223-015-0385-z.

Sood M, Kapoor D, Kumar V, Sheteiwy M S, Ramakrishnan M, Landi M, Aranti F and Sharma A. 2020. Trichoderma: The “Secrets” of a multitalented biocontrol agent. Plants. 9(6): 762. doi: 10.3390/plants9060762.

Tansengco M, Tejano J, Coronado F, Gacho C and Barcelo J. 2018. Heavy metal tolerance and removal of Trichoderma species isolated from mine tailings in Itogon, Benguet. Environmental and Natural Resources Journal. 16 (1): 39-57.

Thomine, S., and Lanquar, V. (2011). “Iron transport and signaling in plants,” in Transporters and Pumps in Plant Signaling, eds M. Geisler and K. Bemema (Berlin; Heidelberg: Springer), 99–131.

Verbon E H, Trapet P L, Stringlis I A, Kruijs S, Kakker P A H M and Pieterse C M J. 2017. Iron and immunity. Annual Reviews of Phytopathology. 55:15.1-15.21. http:doi.org/10.1146/annurev-phyto-080516-035537.

Water B M and Armburst L C, 2013. Optimal copper supply is required for normal plant iron deficiency responses. Plant8 (12). doi: 10.4161/psb.26611

Published

2024-07-02

How to Cite

N, .S., Naik, G.B., Y B, N., Patil, S., & Naik, M.K. (2024). Evaluation of Trichoderma isolates for their potential biosorption of copper (Cu) and iron (Fe) in Malnad (hilly) region of Karnataka state. Journal of Eco-Friendly Agriculture, 19(2), 432–439. https://doi.org/10.48165/jefa.2024.19.02.32