The Concept and Application of Simulation in Population Genetics

Authors

  • Sonali Sonejita Nayak Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
  • Manjit Panigrahi Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
  • Divya Rajawat Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
  • Kanika Ghildiyal Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
  • Karan Jain Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
  • Anurodh Sharma Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
  • Nabaneeta Smaraki Division of Veterinary Microbiology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, UP, India
  • Harsh Rajeshbhai Jogi Division of Veterinary Microbiology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, UP, India
  • Bharat Bhushan Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India

DOI:

https://doi.org/10.48165/ijvsbt.19.6.01

Keywords:

Coalescence, Evolution, Genomics, Population Genetics, Simulation

Abstract

The process of building a model or copy of a real-world system and assessing its behaviour under various scenarios is referred to as simulation. Simulations can be used in a variety of fields, including biology, engineering, physics, economics, and the social sciences. Simulation in population genetics is the process of simulating a population's genetic makeup and evolutionary history using mathematical models and computer algorithms. It is important in population genetics for a better understanding of the impact of various evolutionary and demographic scenarios on sequence variation and patterns and for allowing investigators to better assess and design analytical methods in the study of disease-associated genetic factors. This is an important tool for studying population genetic diversity and how natural selection, genetic drift, mutation, migration, and other evolutionary forces have influenced the population's genetic makeup. There are three fundamental frameworks for simulation: coalescent, forward, and resampling methods. Numerous simulators that fit under these frameworks can be compared in terms of their evolutionary and demographic scenarios, computing complexity, and particular applications. Population simulation is becoming increasingly important in evolutionary biology, enabling researchers to explore the effects of various genetic models on genetic diversity and DNA sequence patterns.

Downloads

Download data is not yet available.

References

Ahmad, S.F., Panigrahi, M., Chhotaray, S., Pal, D., Parida, S., Bhushan, B., ... & Singh, R.K. (2020). Revelation of genomic breed composition in a crossbred cattle of India with the help of Bovine50K BeadChip. Genomics, 112(2), 1531-1535.

Balloux, F. (2001). EASYPOP (version 1.7): a computer program for population genetics simulations. Journal of Heredity, 92(3), 301-302.

Balloux, F., & Goudet, J. (2002). Statistical properties of population differentiation estimators under stepwise mutation in a finite island model. Molecular Ecology, 11(4), 771-783.

Baumdicker, F., Bisschop, G., Goldstein, D., Gower, G., Ragsdale, A. P., Tsambos, G., ... & Kelleher, J. (2022). Efficient ancestry and mutation simulation with msprime 1.0. Genetics, 220(3), iyab229.

Beaumont, M.A. (2010). Approximate Bayesian computation in evolution and ecology. Annual Review of Ecology, Evolution, and Systematics, 41(1), 379-406.

Calafell, F., Grigorenko, E.L., Chikanian, A.A., & Kidd, K.K. (2001). 2001Haplotype evolution and linkage disequilibrium: A simulation study. Human Heredity, 51(1-2), 85-96.

Castillo, A.I., Roos, B.H., Rosenberg, M.S., Cartwright, R.A., & Wilson, M.A. (2022). Genie: an interactive real-time simulation for teaching genetic drift. Evolution: Education and Outreach, 15(1), 1-13.

Chhotaray, S., Panigrahi, M., Bhushan, B., Gaur, G.K., Dutt, T., Mishra, B.P., & Singh, R.K. (2021b). Genome-wide association study reveals genes crucial for coat color production in Vrindavani cattle. Livestock Science, 247, 104476.

Chhotaray, S., Panigrahi, M., Pal, D., Ahmad, S.F., Bhanuprakash, V., Kumar, H., ... & Singh, R.K. (2021a). Genome-wide estimation of inbreeding coefficient, effective population size and haplotype blocks in Vrindavani crossbred cattle strain of India. Biological Rhythm Research, 52(5), 666-679.

Chhotaray, S., Panigrahi, M., Pal, D., Ahmad, S.F., Bhushan, B., Gaur, G.K., ... & Singh, R.K. (2020). Ancestry informative markers derived from discriminant analysis of principal components provide important insights into the composition of crossbred cattle. Genomics, 112(2), 1726-1733.

Eldon, B., Birkner, M., Blath, J., & Freund, F. (2015). Can the site frequency spectrum distinguish exponential population growth from multiple-merger coalescents? Genetics, 199(3), 841-856.

Faux, A.M., Gorjanc, G., Gaynor, R.C., Battagin, M., Edwards, S.M., Wilson, D.L., ... & Hickey, J.M. (2016). AlphaSim: software for breeding program simulation. The Plant Genome, 9(3), plantgenome2016-02.

Gaynor, R.C., Gorjanc, G., & Hickey, J.M. (2021). AlphaSimR: An R package for breeding program simulations. G3, 11(2), jkaa017. Gaynor, R.C., Gorjanc, G., Bentley, A.R., Ober, E.S., Howell, P., Jackson, R., Mackay, I.J., & Hickey, J.M. (2017). A two-part strategy for using genomic selection to develop inbred lines. Crop Science, 57(5), 2372-2386.

Gorjanc, G., Cleveland, M. A., Houston, R. D., & Hickey, J. M. (2015). Potential of genotyping-by-sequencing for genomic selection in livestock populations. Genetics Selection Evolution, 47, 1-14.

Gorjanc, G., Gaynor, R. C., & Hickey, J. M. (2018). Optimal cross selection for long-term genetic gain in two-part programs with rapid recurrent genomic selection. Theoretical and applied genetics, 131, 1953-1966.ca

Ha, N.-T., Pook, T., Dierks, C., Weigend, S., Preisinger, R. (2017). A simulation approach to optimize breeding programs with application to the introgression of the blue egg color into a high performing layer line. 10th European Symposium on Poultry Genetics, 26-28, June, Saint-Malo, France p. 107.

Harris, K. (2019). From a database of genomes to a forest of evolutionary trees. Nature Genetics, 51(9), 1306-1307. Harris, K., & Nielsen, R. (2016). The genetic cost of Neanderthal introgression. Genetics, 203(2), 881-891.

Hayes, B., & Goddard, M.E. (2003). Evaluation of marker assisted selection in pig enterprises. Livestock Production Science, 81(2- 3), 197-211.

Hudson, R.R. (1983). Testing the constant-rate neutral allele model with protein sequence data. Evolution; International Journal of Organic Evolution, 37(1), 203-217.

Hudson, R.R. (2002). Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics, 18(2), 337-338.

Jenko, J., Gorjanc, G., Cleveland, M.A., Varshney, R.K., Whitelaw, C.B.A., Woolliams, J.A., & Hickey, J.M. (2015). Potential of promotion of alleles by genome editing to improve quantitative traits in livestock breeding programs. Genetics Selection Evolution, 47(1), 1-14.

Johnsson, M., Gaynor, R.C., Jenko, J., Gorjanc, G., De Koning, D.J., & Hickey, J.M. (2019). Removal of alleles by genome editing (RAGE) against deleterious load. Genetics Selection Evolution, 51, 1-18.

Kaisa, K., Kumar, H., Saravanan, K., Rajawat, D., Bhushan, B., Kumar, P., et al. (2020). Concepts of genomic selection in poultry and its applications. International Journal of Livestock Research, 10(10), 32-42.

Kanitz, R., Guillot, E. G., Antoniazza, S., Neuenschwander, S., & Goudet, J. (2018). Complex genetic patterns in human arise from a simple range-expansion model over continental landmasses. PLoS One, 13(2), e0192460.

Kelleher, J., Thornton, K.R., Ashander, J., & Ralph, P.L. (2018). Efficient pedigree recording for fast population genetics simulation. PLOS Computational Biology, 14(11), e1006581.

Kelleher, J., Wong, Y., Wohns, A.W., Fadil, C., Albers, P.K., & McVean, G. (2019). Inferring whole-genome histories in large population datasets. Nature Genetics, 51(9), 1330-1338.

Kumar, H., Panigrahi, M., Chhotaray, S., Pal, D.V.B., Ka, S., Shandilya, R., Parida, S., & Bhushan, B. (2019). Identification of breed specific SNP panel in nine different cattle genomes. Biomedical Research, 30(1).

Kumar, H., Panigrahi, M., Chhotaray, S., Parida, S., Chauhan, A., Bhushan, B., Gaur, G.K., Mishra, B.P., & Singh, R.K. (2021a). Comparative analysis of five different methods to design a breed-specific SNP panel for cattle. Animal Biotechnology, 32(1), 130-136.

Kumar, H., Panigrahi, M., Rajawat, D., Panwar, A., Nayak, S.S., Kaisa, K., Bhushan, B., & Dutt, T. (2021b). Selection of breed-specific SNPs in three Indian sheep breeds using ovine 50 K array. Small Ruminant Research, 205, 106545.

Kumar, H., Panigrahi, M., Saravanan, K.A., Rajawat, D., Parida, S., Bhushan, B., ... & Singh, R.K. (2023). Genome-wide detection of copy number variations in Tharparkar cattle. Animal Biotechnology, 34(2), 448-455.

Laval, G., & Excoffier, L. (2004). SIMCOAL 2.0: a program to simulate genomic diversity over large recombining regions in a subdivided population with a complex history. Bioinformatics, 20(15), 2485-2487.

Lin, Z., Cogan, N.O., Pembleton, L.W., Spangenberg, G.C., Forster, J.W., Hayes, B.J., & Daetwyler, H.D. (2016). Genetic gain and inbreeding from genomic selection in a simulated commercial breeding program for perennial ryegrass. The Plant Genome, 9(1), plantgenome 2015-06.

Maria, A. (1997). Introduction to modeling and simulation. In: Proceedings of the 29th conference on Winter simulation. 7 - 10, December, 1997, Atlanta Georgia, USA. pp. 7-13.

The Concept and Application of Simulation in Population Genetics

Messer, P.W. (2013). SLiM: Simulating evolution with selection and linkage. Genetics, 194(4), 1037-1039.

Nayak, S.S., Kumar, H., Rajawat, D., Saravanan, K.A., Panwar, A., Ghildiyal, K., ... & Panigrahi, M. (2023a). Coalescence: An anti clockwise travel. 12, ( 2) 2630-2639

Nayak, S.S., Panigrahi, M., Kumar, H., Rajawat, D., Sharma, A., Bhushan, B., & Dutt, T. (2023b). Evidence for selective sweeps in the MHC gene repertoire of various cattle breeds. Animal Biotechnology, (1-7) https://doi.org/10.1080/10495398.2023.

Neuenschwander, S., Michaud, F., & Goudet, J. (2019). QuantiNemo 2: a Swiss knife to simulate complex demographic and genetic scenarios, forward and backward in time. Bioinformatics, 35(5), 886-888.

Pal, D., Panigrahi, M., Chhotaray, S., Kumar, H., Nayak, S. S., Rajawat, D., Parida, S., Gaur, G. K., Dutt, T., & Bhushan, B. (2022). Unraveling genetic admixture in the Indian crossbred cattle by different approaches using Bovine 50K BeadChip. Tropical Animal Health and Production, 54(2), 135.

Panigrahi, M., Kumar, H., Saravanan, K.A., Rajawat, D., Sonejita Nayak, S.S., Ghildiyal, K., Kaisa, K., Parida, S., Bhushan, B., & Dutt, T. (2022). Trajectory of livestock genomics in South Asia: A comprehensive review. Gene, 843, 146808.

Peng, B., & Kimmel, M. (2005). simuPOP: a forward-time population genetics simulation environment. Bioinformatics, 21(18), 3686- 3687.

Pook, T., Schlather, M., & Simianer, H. (2020). MoBPS-modular breeding program simulator. G3, 10(6), 1915-1918.

Pook, T., Schlather, M., de Los Campos, G., Mayer, M., Schoen, C. C., & Simianer, H. (2019). HaploBlocker: creation of subgroup-specific haplotype blocks and libraries. Genetics, 212(4), 1045-1061.

Rajawat, D., Panigrahi, M., Kumar, H., Nayak, S.S., Parida, S., Bhushan, B., ... & Mishra, B.P. (2022a). Identification of important genomic footprints using eight different selection signature statistics in domestic cattle breeds. Gene, 816, 146165.

Rajawat, D., Panigrahi, M., Kumar, H., Nayak, S.S., Saravanan, K.A., Bhushan, B., & Dutt, T. (2022b). Revealing genomic footprints of selection for fiber and production traits in three Indian sheep breeds. Journal of Natural Fibers, 19(16), 14963-14974.

Rajawat, D., Panigrahi, M., Nayak, S. S., Ghildiyal, K., Sharma, A., Kumar, H., ... & Dutt, T. (2023). Uncovering genes underlying coat color variation in indigenous cattle breeds through genome-wide positive selection. Animal Biotechnology, (1-14) https://doi.org/10.1080/10495398.2023.2240387.

Rasmussen, M.D., Hubisz, M.J., Gronau, I., & Siepel, A. (2014). Genome-wide inference of ancestral recombination graphs. PLOS Genetics, 10(5), e1004342.

Sanjak, J.S., Long, A.D., & Thornton, K.R. (2017). A model of compound heterozygous, loss-of-function alleles is broadly consistent with observations from complex-disease GWAS datasets. PLOS Genetics, 13(1), e1006573.

Saravanan, K.A., Panigrahi, M., Kumar, H., Bhushan, B., Dutt, T., & Mishra, B.P. (2020). Selection signatures in livestock genome:

A review of concepts, approaches and applications. Livestock Science, 241, 104257.

Saravanan, K.A., Panigrahi, M., Kumar, H., Parida, S., Bhushan, B., Gaur, G.K., ... & Singh, R.K. (2022a). Genome-wide assessment of genetic diversity, linkage disequilibrium and haplotype block structure in Tharparkar cattle breed of India. Animal Biotechnology, 33(2), 297-311.

Saravanan, K.A., Panigrahi, M., Kumar, H., Rajawat, D., Nayak, S.S., Bhushan, B., & Dutt, T. (2022b). Role of genomics in combating COVID-19 pandemic. Gene, 823, 146387.

Saravanan, K.A., Panigrahi, M., Kumar, H., Parida, S., Bhushan, B., Gaur, G.K., Dutt, T., Mishra, B.P., & Singh, R.K. (2021). Genomic scans for selection signatures revealed candidate genes for adaptation and production traits in a variety of cattle breeds. Genomics, 113(3), 955-963.

Sargolzaei, M., & Schenkel, F.S. (2009). QMSim: a large-scale genome simulator for livestock. Bioinformatics, 25(5), 680-681. Schaefer, N.K., Shapiro, B., & Green, R.E. (2021). An ancestral recombination graph of human, Neanderthal, and Denisovan genomes. Science Advances, 7(29), eabc0776.

Simianer, H., Pook, T., & Schlather, M. (2018). Turning the PAGE–the potential of genome editing in breeding for complex traits revisited. 2018, researchgate.net.

Speidel, L., Cassidy, L., Davies, R.W., Hellenthal, G., Skoglund, P., & Myers, S.R. (2021). Inferring population histories for ancient genomes using genome-wide genealogies. Molecular Biology and Evolution, 38(9), 3497-3511.

Speidel, L., Forest, M., Shi, S., & Myers, S.R. (2019). A method for genome-wide genealogy estimation for thousands of samples. Nature Genetics, 51(9), 1321-1329.

Tang, L. (2019). Genealogy at the genome scale. Nature Methods, 16(11), 1077.

Tang, L. (2020). Standardizing population genetics simulations. Nature Methods, 17(9), 876-876.

Täubert, H., Reinhardt, F., & Simianer, H. (2010). ZPLAN+, a new software to evaluate and optimize animal breeding programs. In Proceedings of the 9th world congress on genetics applied to livestock production (Vol. 1, No. 6).

Wohns, A.W., Wong, Y., Jeffery, B., Akbari, A., Mallick, S., Pinhasi, R., ... & McVean, G. (2022). A unified genealogy of modern and ancient genomes. Science, 375(6583), eabi8264.

Wright, F.A., Huang, H., Guan, X., Gamiel, K., Jeffries, C., Barry, W.T., ... & Zou, F. (2007). Simulating association studies: a data-based resampling method for candidate regions or whole genome scans. Bioinformatics, 23(19), 2581-2588.

Yuan, X., Miller, D.J., Zhang, J., Herrington, D., & Wang, Y. (2012). An overview of population genetic data simulation. Journal of Computational Biology, 19(1), 42-54.

Zeigler, B.P., Kim, T.G., & Praehofer, H. (2000). Theory of modeling and simulation. Academic Press, Cambridge, Massachusetts, United States.

Zhang, R., Liu, C., Yuan, K., Ni, X., Pan, Y., & Xu, S. (2021). AdmixSim 2: a forward-time simulator for modeling complex population admixture. BMC bioinformatics, 22, 1-15.

Published

2023-11-07

How to Cite

Nayak, S. S., Panigrahi, M., Rajawat, D., Ghildiyal, K., Jain, K., Sharma, A., Smaraki, N. ., Jogi, H. R., & Bhushan, B. (2023). The Concept and Application of Simulation in Population Genetics. Indian Journal of Veterinary Sciences and Biotechnology, 19(6), 1-7. https://doi.org/10.48165/ijvsbt.19.6.01