Effect of Sodium Butyrate on Growth Performance of Dairy  Calves: An Overview

Authors

  • Anjali Arya Department of Livestock Production Management, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Anand-388001 (Gujarat), India
  • Pravinchandra Mohan Lunagariya Livestock Research Station, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Anand-388001 (Gujarat), India
  • Manojkumar Motibhai Trivedi Department of Livestock Production Management, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Anand-388001 (Gujarat), India
  • Rakeshkumar Jayantilal Modi Department of Livestock Production Management, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Anand-388001 (Gujarat), India
  • Yogeshkumar Gulabbhai Patel Department of Livestock Production Management, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Anand-388001 (Gujarat), India
  • Kalpeshkumar Keshubhai Sorathiya Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Anand-388001 (Gujarat), India

DOI:

https://doi.org/10.48165/ijvsbt.20.1.01

Keywords:

Butyrate, Dairy calves, Gastrointestinal tracT, Volatile fatty acids

Abstract

Butyrate, a Volatile Fatty Acids (VFAs) is produced by microbial fermentation of feed carbohydrates in the stomach and large intestine. Butyrate is the least prevalent of the three main VFAs produced in the gastrointestinal tract (acetate, propionate, and butyrate), however, has the most dynamic behaviour and functions in growing calves. It is essential for promoting the growth of the various rumen, abomasum, and intestinal epithelia. Dietary butyrate supplementation can help to further speed up the growth of the gastrointestinal tract (GIT). There is proof that adding Na-butyrate to liquid feed at a higher dose rate of 45 g per day improved growth performance, feed efficiency, and antioxidant activity in dairy calves. It has been frequently demonstrated that adding sodium butyrate to a liquid diet at a modest level (0.3 percent of DM) will enhance pre-weaned calves' growth, function, and GIT development and is also advisable due to a very strong, unpleasant smell. Future research should concentrate on how well Na-butyrate works to improve the growth performance of calves in Indian environments.  

Downloads

Download data is not yet available.

References

Baldwin, R. L., McLeod, K. R., Klotz, J. L., & Heitmann, R. N. (2004). Rumen development, intestinal growth and hepatic metabolism in the pre-and post-weaning ruminant. Journal of Dairy Science, 87, 55-65.

Baldwin, R. L., Wu, S., Li, W., Li, C., Bequette, B. J., & Li, R. W. (2012). Quantification of transcriptome responses of the rumen epithelium to butyrate infusion using RNA-seq technology. Gene Regulation and Systems Biology, 6, 67-80.

Bergman, E. N. (1990). Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiological reviews, 70(2), 567-590.

Dieho, K., Dijkstra, J., Schonewille, J. T., & Bannink, A. (2016). Changes in ruminal volatile fatty acid production and absorption rate during the dry period and early lactation as affected by rate of increase of concentrate allowance. Journal of Dairy Science, 99(7), 5370-5384.

Dengler, F., Rackwitz, R., Benesch, F., Pfannkuche, H., & Gäbel, G. (2015). Both butyrate incubation and hypoxia upregulate genes involved in the ruminal transport of SCFA and their metabolites. Journal of Animal Physiology and Animal Nutrition, 99(2), 379-390.

Drackley, J. K. (2008). Calf nutrition from birth to breeding. Veterinary clinics of North America: Food animal practice, 24(1), 55-86. Eskandary, M. M., Yazdi, M. H., Mahjoubi, E., & Kazemi

Bonchenari, M. (2021). The effect of different feeding times of microencapsulated sodium butyrate in whole milk and starter feed on growth and health of Holstein dairy calves. Research Square, Preprint (Version 1). [https://doi.org/10.21203/ rs.3.rs-1117757/v1]

Flaga, J., Górka, P., Zabielski, R., & Kowalski, Z. M. (2015). Differences in monocarboxylic acid transporter type 1 expression in rumen epithelium of newborn calves due to age and milk or milk replacer feeding. Journal of Animal Physiology and Animal Nutrition, 99(3), 521-530.

Frieten, D., Gerbert, C., Koch, C., Dusel, G., Eder, K., Kanitz, E., ... & Hammon, H. M. (2017). Ad libitum milk replacer feeding, but not butyrate supplementation, affects growth performance as well as metabolic and endocrine traits in Holstein calves. Journal of Dairy Science, 100(8), 6648-6661.

Galfi, P., & Bokori, J. (1990). Feeding trial in pigs with a diet containing sodium n-butyrate. Acta Veterinaria Hungarica, 38(1-2), 3-17. Georgieva, N. V., Gabrashanska, M., Koinarski, V., & Yaneva, Z. (2011). Zinc supplementation against Eimeria acervulina-induced oxidative damage in broiler chickens. Veterinary Medicine International, 2011.

Ghaffari, M. H., Hammon, H. M., Frieten, D., Gerbert, C., Dusel, G., & Koch, C. (2021). Effects of milk replacer meal size on feed intake, growth performance, and blood metabolites and hormones of calves fed milk replacer with or without butyrate ad libitum: A cluster-analytic approach. Journal of Dairy Science, 104(4), 4650-4664.

Guilloteau, P., Zabielski, R., David, J. C., Blum, J. W., Morisset, J. A., Biernat, M., & Hamon, Y. (2009). Sodium-butyrate as a growth

promoter in milk replacer formula for young calves. Journal of Dairy Science, 92(3), 1038-1049.

Guilloteau, P., Savary, G., Jaguelin-Peyrault, Y., Romé, V., Le Normand, L., & Zabielski, R. (2010). Dietary sodium butyrate supplementation increases digestibility and pancreatic secretion in young milk-fed calves. Journal of Dairy Science, 93(12), 5842-5850.

Gorka, P., Kowalski, Z. M., Pietrzak, P., Kotunia, A., Kiljanczyk, R., Flaga, J., ... & Zabielski, R. (2009). Effect of sodium butyrate supplementation in milk replacer and starter diet on rumen development in calves. Development, 4(5), 10-11.

Górka, P., Kowalski, Z. M., Pietrzak, P., Kotunia, A., Jagusiak, W., Holst, J. J., & Zabielski, R. (2011). Effect of method of delivery of sodium butyrate on rumen development in newborn calves. Journal of Dairy Science, 94(11), 5578-5588.

Górka, P., Pietrzak, P., Kotunia, A., Zabielski, R., & Kowalski, Z. M. (2014). Effect of method of delivery of sodium butyrate on maturation of the small intestine in newborn calves. Journal of Dairy Science, 97(2), 1026-1035.

Górka, P., Śliwiński, B., Flaga, J., Wieczorek, J., Godlewski, M. M., Wierzchoś, E., & Kowalski, Z. M. (2017). Effect of butyrate infusion into the rumen on butyrate flow to the duodenum, selected gene expression in the duodenum epithelium, and nutrient digestion in sheep. Journal of Animal Science, 95(5), 2144-2155

Górka, P., Kowalski, Z. M., Zabielski, R., & Guilloteau, P. (2018). Invited review: Use of butyrate to promote gastrointestinal tract development in calves. Journal of Dairy Science, 101(6), 4785-4800.

Hamer, H. M., Jonkers, D. M. A. E., Venema, K., Vanhoutvin, S. A. L. W., Troost, F. J., & Brummer, R. J. (2008). The role of butyrate on colonic function. Alimentary pharmacology & therapeutics, 27(2), 104-119.

Heinrichs, A. J., & Lesmeister, K. E. (2005). Rumen development in the dairy calf. Calf and heifer rearing: principles of rearing the modern dairy heifer from calf to calving. 60th University of Nottingham Easter School in Agricultural Science, Nottingham, UK. 23rd-24th March, 2004, 53-65.

Herrick, K. J., Hippen, A. R., Kalscheur, K. F., Schingoethe, D. J., Casper, D. P., Moreland, S. C., & Van Eys, J. E. (2017). Single-dose infusion of sodium butyrate, but not lactose, increases plasma β-hydroxybutyrate and insulin in lactating dairy cows. Journal of dairy science, 100(1), 757-768.

Hill, T. M., Aldrich, J. M., Schlotterbeck, R. L., & Bateman II, H. G. (2007). Effects of changing the fat and fatty acid composition of milk replacers fed to neonatal calves. The Professional Animal Scientist, 23(2), 135-143.

Hill, T. M., Bateman Ii, H. G., Aldrich, J. M., & Schlotterbeck, R. L. (2010). Effect of milk replacer program on digestion of nutrients in dairy calves. Journal of Dairy Science, 93(3), 1105-1115.

Horton, R. E., & Vidarsson, G. (2013). Antibodies and their receptors: different potential roles in mucosal defense. Frontiers in Immunology, 4, 200.

Hu, Z., & Guo, Y. (2007). Effects of dietary sodium butyrate supplementation on the intestinal morphological structure, absorptive function and gut flora in chickens. Animal Feed Science and Technology, 132(3-4), 240-249.

Kato, S. I., Sato, K., Chida, H., Roh, S. G., Ohwada, S., Sato, S., & Katoh, K. (2011). Effects of Na-butyrate supplementation in milk formula on plasma concentrations of GH and insulin,

and on rumen papilla development in calves. Journal of Endocrinology, 211(3), 241-248.

Koch, C., Gerbert, C., Frieten, D., Dusel, G., Eder, K., Zitnan, R., & Hammon, H. M. (2019). Effects of ad libitum milk replacer feeding and butyrate supplementation on the epithelial growth and development of the gastrointestinal tract in Holstein calves. Journal of Dairy Science, 102(9), 8513-8526.

Laarman, A. H., Dionissopoulos, L., AlZahal, O., Greenwood, S. L., Steele, M. A., & McBride, B. W. (2013). Butyrate and subacute ruminal acidosis affect abundance of membrane proteins involved with proton and short chain fatty acid transport in the rumen epithelium of dairy cows. American Journal of Animal and Veterinary Sciences, 8(4), 220-229.

Li, S., Khafipour, E., Krause, D. O., Kroeker, A., Rodriguez-Lecompte, J. C., Gozho, G. N., & Plaizier, J. C. (2012). Effects of subacute ruminal acidosis challenges on fermentation and endotoxins in the rumen and hindgut of dairy cows. Journal of Dairy Science, 95(1), 294-303.

Liu, W., La, A. L. T. Z., Evans, A., Gao, S., Yu, Z., Bu, D., & Ma, L. (2021). Supplementation with sodium butyrate improves growth and antioxidant function in dairy calves before weaning. Journal of Animal Science and Biotechnology, 12, 1-9.

Malhi, M., Gui, H., Yao, L., Aschenbach, J. R., Gäbel, G., & Shen, Z. (2013). Increased papillae growth and enhanced short-chain fatty acid absorption in the rumen of goats are associated with transient increases in cyclin D1 expression after ruminal butyrate infusion. Journal of Dairy Science, 96(12), 7603-7616.

Mallo, J. J., Balfagón, A., Gracia, M. I., Honrubia, P., & Puyalto, M. (2012). Evaluation of different protections of butyric acid aiming for release in the last part of the gastrointestinal tract of piglets. Journal of Animal Science, 90(4), 227-229.

Mazzoni, M., Le Gall, M., De Filippi, S., Minieri, L., Trevisi, P., Wolinski, J., & Bosi, P. (2008). Supplemental sodium butyrate stimulates different gastric cells in weaned pigs. The Journal of Nutrition, 138(8), 1426-1431.

McCurdy, D. E., Wilkins, K. R., Hiltz, R. L., Moreland, S., Klanderman, K., & Laarman, A. H. (2019). Effects of supplemental butyrate and weaning on rumen fermentation in Holstein calves. Journal of Dairy Science, 102(10), 8874-8882.

Mentschel, J., Leiser, R., Mülling, C., Pfarrer, C., & Claus, R. (2001). Butyric acid stimulates rumen mucosa development in the calf mainly by a reduction of apoptosis. Archives of Animal Nutrition, 55(2), 85-102.

Nazari, M., Karkoodi, K., & Alizadeh, A. (2012). Performance and physiological responses of milk-fed calves to coated calcium butyrate supplementation. South African Journal of Animal Science, 42(3), 296-303.

O’Hara, E., Kelly, A., McCabe, M. S., Kenny, D. A., Guan, L. L., & Waters, S. M. (2018). Effect of a butyrate-fortified milk replacer on gastrointestinal microbiota and products of fermentation in artificially reared dairy calves at weaning. Scientific Reports, 8(1), 1-11.

Penner, G. B., Steele, M. A., Aschenbach, J. R., & McBride, B. W. (2011). Ruminant Nutrition Symposium: Molecular adaptation of ruminal epithelia to highly fermentable diets. Journal of Animal Science, 89(4): 1108-1119.,

Shen, Z., Martens, H., & Schweigel‐Röntgen, M. (2012). Na+ transport across rumen epithelium of hay‐fed sheep is acutely stimulated by the peptide IGF‐1 in vitro. Experimental Physiology, 97(4), 497-505.

Ślusarczyk, K., Strzetelski, J. A., & Furgał-Dierżuk, I. (2010). The effect of sodium butyrate on calf growth and serum level of β-hydroxybutyric acid. Journal of Animal and Feed Sciences, 19(3), 348-357.

Steele, M. A., Dionissopoulos, L., AlZahal, O., Doelman, J., & McBride, B. W. (2012). Rumen epithelial adaptation to ruminal acidosis in lactating cattle involves the coordinated expression of insulin like growth factor-binding proteins and a cholesterolgenic enzyme. Journal of Dairy Science, 95(1), 318-327.

Steele, M. A., Penner, G. B., & Chaucheyras-Durand, F. (2016). Development and physiology of the rumen and the lower gut: Targets for improving gut health. Journal of Dairy Science, 99(6), 4955-4966.

Sun, Y. Y., Li, J., Meng, Q. S., Wu, D. L., & Xu, M. (2019). Effects of butyric acid supplementation of acidified milk on digestive function

and weaning stress of cattle calves. Livestock Science, 225, 78-84.

Vazquez-Mendoza, O., Elghandour, M. M., Salem, A. Z., Cheng, L., Sun, X., Lisete Garcia-Flor, V., ... & Anele, U. (2020). Effects of sodium butyrate and active Bacillus amyloliquefaciens supplemented to pasteurized waste milk on growth performance and health condition of Holstein dairy calves. Animal Biotechnology, 31(3), 209-216.

Wanat, P., Górka, P., & Kowalski, Z. M. (2015). Effect of inclusion rate of microencapsulated sodium butyrate in starter mixture for dairy calves. Journal of Dairy Science, 98(4), 2682-2686.

Wiese, B. I., Górka, P., Mutsvangwa, T., Okine, E., & Penner, G. B. (2013). Interrelationship between butyrate and glucose supply on butyrate and glucose oxidation by ruminal epithelial preparations. Journal of Dairy Science, 96(9), 5914-5918.

Published

2023-12-22

How to Cite

Arya, A., Lunagariya, P.M., Trivedi, M.M., Modi, R.J., Patel, Y.G., & Sorathiya, K.K. (2023). Effect of Sodium Butyrate on Growth Performance of Dairy  Calves: An Overview. Indian Journal of Veterinary Sciences and Biotechnology, 20(1), 1–6. https://doi.org/10.48165/ijvsbt.20.1.01