Integrons: A Mobile Genetic Element of Concern in Antimicrobial Resistance Gene Transfer: An Overview

Authors

  • Veera Venkata Satyanarayana Gidla Department of Veterinary Public Health and Epidemiology, Rajiv Gandhi Institute of Veterinary Education and Research, Puducherry, India
  • Ajay Kumar V.J Department of Veterinary Public Health and Epidemiology, Rajiv Gandhi Institute of Veterinary Education and Research, Puducherry, India
  • Bhanu Rekha V. Department of Veterinary Public Health and Epidemiology, Rajiv Gandhi Institute of Veterinary Education and Research, Puducherry, India
  • Deepan G. Department of Veterinary Public Health and Epidemiology, Rajiv Gandhi Institute of Veterinary Education and Research, Puducherry, India

DOI:

https://doi.org/10.48165/ijvsbt.19.3.01

Keywords:

Integrons, Antibiotic resistance genes, horizontal gene transfer, mobile genetic elements, antimicrobial selection pressure

Abstract

Abstract

Antimicrobial resistance is one of the major global public health problems. There are numerous factors which contribute to the development of antimicrobial resistance. One such factor is integrons which is a mobile genetic element. Integrons contribute to the spread and distribution of antimicrobial resistance genes across diverse bacterial species through horizontal gene transfer. Integrons are made up of three components namely an integrase gene (intI), a primary recombination site (attI) and a promoter region. Integrons transfer resistance genes through transfer of plasmids or through phages. There are two types of integrons such as resistance integrons and super integrons. Resistance integrons are of 4 classes (class I-IV). Class 1 integrons are major contributors of antimicrobial resistance globally and found as contaminant in all ecosystems dominated by humans. The peculiarity of integrons is that they offer a mechanism for quick migration and exchange of various resistance genes. Bacteria with antibiotics, disinfectants and heavy metals discharged into waste streams hotspots are created where intricate interactions and selection events can take place for the interchange of genes and the creation of novel gene combinations.

Downloads

Download data is not yet available.

References

REFERENCES

Akrami, F., Rajabnia, M., and Pournajaf, A. (2019). Resistance integrons; A mini review. Caspian journal of internal medicine, 10(4), 370.

Barlow, R. S., and Gobius, K. S. (2006). Diverse class 2 integrons in bacteria from beef cattle sources. Journal of Antimicrobial chemotherapy, 58(6), 1133-1138.

Bengtsson-Palme, J., Kristiansson, E., and Larsson, D. J. (2018). Environmental factors influencing the development and spread of antibiotic resistance. FEMS microbiology reviews, 42(1), fux053.

Cambray, G., Guerout, A. M., and Mazel, D. (2010). Integrons. Annual review of genetics, 44, 141-166.

Deng, Y., Bao, X., Ji, L., Chen, L., Liu, J., Miao, J., ... and Yu, G. (2015). Resistance integrons: class 1, 2 and 3 integrons. Annals of clinical microbiology and antimicrobials, 14(1), 1-11.

Domingues, S., da Silva, G. J., and Nielsen, K. M. (2012). Integrons: vehicles and pathways for horizontal dissemination in bacteria. Mobile genetic elements, 2(5), 211-223.

Fluit, A. C., & Schmitz, F. J. (2004). Resistance integrons and super-integrons. Clinical microbiology and infection, 10(4), 272-288.

Gaze, W. H., Zhang, L., Abdouslam, N. A., Hawkey, P. M., Calvo-Bado, L., Royle, J., ... and Wellington, E. M. (2011). Impacts of anthropogenic activity on the ecology of class 1 integrons and integron-associated genes in the environment. The ISME journal, 5(8), 1253-1261.

Ghaly, T. M., Geoghegan, J. L., Tetu, S. G., and Gillings, M. R. (2020). The peril and promise of integrons: beyond antibiotic resistance. Trends in microbiology, 28(6), 455-464.

Ghaly, T. M., Gillings, M. R., Penesyan, A., Qi, Q., Rajabal, V., and Tetu, S. G. (2021). The natural history of integrons. Microorganisms, 9(11), 2212.

Gharieb, R. M., Tartor, Y. H., and Khedr, M. H. (2015). Non-Typhoidal Salmonella in poultry meat and diarrhoeic patients: prevalence, antibiogram, virulotyping, molecular detection and sequencing of class I integrons in multidrug resistant strains. Gut pathogens, 7(1), 1-11.

Gillings, M. R., and Paulsen, I. T. (2014). Microbiology of the Anthropocene. Anthropocene, 5, 1-8.

Gillings, M. R., and Stokes, H. W. (2012). Are humans increasing bacterial evolvability?. Trends in ecology & evolution, 27(6), 346-352.

Gillings, M., Boucher, Y., Labbate, M., Holmes, A., Krishnan, S., Holley, M., & Stokes, H. W. (2008). The evolution of class 1 integrons and the rise of antibiotic resistance. Journal of bacteriology, 190(14), 5095-5100.

Gillings, M.R. (2018). DNA as a pollutant: the clinical class 1 integron. Current Pollution Reports, 4(1), pp.49-55.

Gillings, M.R., 2013. Evolutionary consequences of antibiotic use for the resistome, mobilome and microbial pangenome. Frontiers in microbiology, 4, p.4.

Harbottle, H., Thakur, S., Zhao, S., and White, D. G. (2006). Genetics of antimicrobial resistance. Animal biotechnology, 17(2), 111-124.

Joy, N. B., Cajethan, O. E., Munachimso, E. N., and Tolulope, S. A. (2021). Prevalence of integrons in Enterobacteriaceae obtained from clinical samples. Journal of Microbiology and Antimicrobials, 13(1), 1-10.

Kargar, M., Mohammadalipour, Z., Doosti, A., Lorzadeh, S., and Japoni-Nejad, A. (2014). High prevalence of class 1 to 3 integrons among multidrug-resistant diarrheagenic Escherichia coli in southwest of Iran. Osong public health and research perspectives, 5(4), 193-198.

Kaushik, M., Khare, N., Kumar, S., & Gulati, P. (2019). High prevalence of antibiotic resistance and integrons in Escherichia coli isolated from urban river water, India. Microbial drug resistance, 25(3), 359-370.

Mazel, D. and Davies, J. (1999). Antibiotic resistance in microbes. Cellular and Molecular Life Sciences CMLS, 56(9), pp.742-754.

Mendes Moreira, A., Couvé-Deacon, E., Bousquet, P., Chainier, D., Jové, T., Ploy, M. C., &and Barraud, O. (2019). Proteae: a reservoir of class 2 integrons?. Journal of Antimicrobial Chemotherapy, 74(6), 1560-1562.

Ozgumus, O. B., Sandalli, C., Sevim, A., Celik-Sevim, E., & Sivri, N. (2009). Class 1 and class 2 integrons and plasmid-mediated antibiotic resistance in coliforms isolated from ten rivers in northern Turkey. The Journal of Microbiology, 47(1), 19-27.

Partridge, S. R., Kwong, S. M., Firth, N., & Jensen, S. O. (2018). Mobile genetic elements associated with antimicrobial resistance. Clinical microbiology reviews, 31(4), e00088-17.

Partridge, S.R., Tsafnat, G., Coiera, E. and Iredell, J.R. (2009). Gene cassettes and cassette arrays in mobile resistance integrons. FEMS microbiology reviews, 33(4), pp.757-784

Poirel, L., Carrër, A., Pitout, J.D. and Nordmann, P. (2009). Integron mobilization unit as a source of mobility of antibiotic resistance genes. Antimicrobial agents and chemotherapy, 53(6), pp.2492-2498.

Ramírez, M.S., Piñeiro, S. and Centrón, D. (2010). Novel insights about class 2 integrons from experimental and genomic epidemiology. Antimicrobial agents and chemotherapy, 54(2), pp.699-706.

Richard, E., Darracq, B., Loot, C. and Mazel, D. (2022). Unbridled Integrons: A Matter of Host Factors. Cells 2022, 11, 925.

Rowe-Magnus, D.A., Guérout, A.M. and Mazel, D. (1999). Super-integrons. Research in microbiology, 150(9-10), pp.641-651.

Rubin, J., Mussio, K., Xu, Y., Suh, J. and Riley, L.W. (2020). Prevalence of antimicrobial resistance genes and integrons in commensal Gram-negative bacteria in a college community. Microbial Drug Resistance, 26(10), pp.1227-1235.

Sabbagh, P., Rajabnia, M., Maali, A. and Ferdosi-Shahandashti, E. (2021). Integron and its role in antimicrobial resistance: A literature review on some bacterial pathogens. Iranian Journal of Basic Medical Sciences, 24(2), p.136.

Stalder, T., Barraud, O., Casellas, M., Dagot, C. and Ploy, M.C. (2012). Integron involvement in environmental spread of antibiotic resistance. Frontiers in microbiology, 3, p.119.

Sunde, M. (2005). Prevalence and characterization of class 1 and class 2 integrons in Escherichia coli isolated from meat and meat products of Norwegian origin. Journal of Antimicrobial Chemotherapy, 56(6), pp.1019-1024.

Xu, H., Davies, J. and Miao, V. (2007). Molecular characterization of class 3 integrons from Delftia spp. Journal of Bacteriology, 189(17), pp.6276-6283.

Xu, Z., Li, L., Shirtliff, M.E., Alam, M.J., Yamasaki, S. and Shi, L. (2009). Occurrence and characteristics of class 1 and 2 integrons in Pseudomonas aeruginosa isolates from patients in southern China. Journal of Clinical Microbiology, 47(1), pp.230-234.

Zhang, S., Abbas, M., Rehman, M.U., Huang, Y., Zhou, R., Gong, S., Yang, H., Chen, S., Wang, M. and Cheng, A. (2020). Dissemination of antibiotic resistance genes (ARGs) via integrons in Escherichia coli: a risk to human health. Environmental Pollution, 266, p.115260.

Zhao, X., Hu, M., Zhang, Q., Zhao, C., Zhang, Y., Li, L., Qi, J., Luo, Y., Zhou, D. and Liu, Y. (2020). Characterization of integrons and antimicrobial resistance in Salmonella from broilers in Shandong, China. Poultry science, 99(12), pp.7046-7054.

Published

2023-05-09

How to Cite

Gidla, V.V.S., V.J, A.K., V., B.R., & G., D. (2023). Integrons: A Mobile Genetic Element of Concern in Antimicrobial Resistance Gene Transfer: An Overview. Indian Journal of Veterinary Sciences and Biotechnology, 19(3), 1–5. https://doi.org/10.48165/ijvsbt.19.3.01