Oocyte and Embryo Cryopreservation in Porcine In Vitro Production Systems

Authors

  • Hiep Thi Nguyen 1Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
  • Tamas Somfai Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
  • Bui Xuan Nguyen 3Southest Asia Biotechnology Center, Hanoi, Vietnam
  • Kazuhiro Kikuchi Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
  • Nguyen Thi Uoc Southest Asia Biotechnology Center, Hanoi, Vietnam
  • Nguyen Viet Linh Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
  • Nguyen Thi Nhung Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
  • Nguyen Thi Hong Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
  • Nguyen Van Hanh Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam

DOI:

https://doi.org/10.48165/ijvsbt.20.4.01

Keywords:

Cryopreservation,, Embryos,, In vitro,, Porcine oocytes,, Vitrification.

Abstract

Cryopreservation of oocytes and embryos, in addition to sperm, are important for gene banking and flexible use of time and space. In pigs,  in vitro production (IVP) is not only important system for the utilization of sperm kept in gene banks, but also is one of basic technologies  for the production of genetically modified, disease models or xeno-transplantation materials for human. Porcine oocytes and embryos  are characterized by high lipid content that are very sensitive with cooling. Besides, in vitro embryos are weaker than those derived in vivo in term of cell number. Therefore, cryopreservation by vitrification is preferred to slow freezing. Especially, cryopreservation of porcine  oocytes is possible only by vitrification and germinal vesicle (GV) stage is better than MII stage in terms of cytoskeletal organization  and subsequent blastocyst formation. There are several different vitrification methods that have been applied on porcine IVP embryos  based on the difference in cryoprotectants or devices to date. In this review, we discuss about recent IVP system, cryopreservation of  oocytes and embryos in pigs.

Downloads

Download data is not yet available.

References

Appeltant, R., Somfai, T., & Kikuchi, K. (2018). Faster, cheaper, defined and efficient vitrification for immature porcine oocytes through modification of exposure time, macromolecule source and temperature. Cryobiology, 85, 87-94.

Appeltant, R., Somfai, T., Maes, D., van Soom, A., & Kikuchi, K. (2016). Porcine oocyte maturation in vitro: Role of cAMP and oocyte secreted factors - A practical approach. Journal of Reproduction and Development, 62(5), 439-449.

Armitage, W. (1987). Cryopreservation of animal cells. Symposia of Society of Experimental Biology, 41,379-93.

Bartolac, L.K., Lowe, J.L., Koustas, G., Sjöblom, C., & Grupen, C.G. (2015). A comparison of different vitrification devices and the effect of blastocoele collapse on the cryosurvival of in vitro produced porcine embryos. Journal of Reproduction and Development, 61(6), 525-531.

Bauer, B.K., Isom, S.C., Spate, L.D., Whitworth, K.M., Spollen, W.G., Blake, S.M., Springer, G.K., Murphy, C.N., & Prather, R.S. (2010). Transcriptional profiling by deep sequencing identifies differences in mRNA transcript abundance in in vivo-derived versus in vitro-cultured porcine blastocyst stage embryos. Biology of Reproduction, 83(5), 791-798.

Chen, P.R., Redel, B.K., Kerns, K.C., Spate, L.D., & Prather, R.S. (2021). Challenges and considerations during in vitro production of porcine embryos. Cells, 10(10), 2770.

Cuello, C., Gil, M.A., Parrilla, I., Tornel, J., Vázquez, J.M., Roca, J., Berthelot, F., Martinat-Botté, F., & Martínez, E.A. (2004). Vitrification of porcine embryos at various developmental stages using different ultra-rapid cooling procedures. Theriogenology, 62(1-2), 353-361.

Didion, B.A., Pomp, D., Martin, M.J., Homanics, G.E., Markert, C.L. (1990). Observations on the cooling and cryopreservation of pig oocytes at the germinal vesicle stage. Journal of Animal Science, 68, 2803-2810.

Dobrinsky, J.R., Pursel, V.G., Long, C.R., & Johnson, L.A. (2000). Birth of piglets after transfer of embryos cryopreserved by cytoskeletal stabilization and vitrification. Biology of Reproduction, 62(3), 564-70.

Egerszegi, I., Somfai, T., Nakai, M., Tanihara, F., Noguchi, J., Kaneko, H., Nagai, T., Rátky, J., & Kikuchi, K. (2013). Comparison of cytoskeletal integrity, fertilization and developmental competence of oocytes vitrified before or after in vitro maturation in a porcine model. Cryobiology, 67, 287-292.

Esaki, R., Ueda, H., Kurome, M., Hirakawa, K., Tomii, R., Yoshioka, H., Ushijima, H., Kuwayama, M., & Nagashima, H. (2004). Cryopreservation of porcine embryos derived from in vitro matured oocytes. Biology of Reproduction, 71(2), 432-437.

Grupen, C.G. (2014). The evolution of porcine embryo in vitro production. Theriogenology, 81(1), 24-37.

Haraguchi, S., Dang-Nguyen, T.Q., Kikuchi, K., & Somfai, T. (2024). Electroporation-mediated genome editing in vitrified/warmed porcine zygotes obtained in vitro. Molecular Reproduction and Development, 91(1), e23712.

Huang, Z., Gao, L., Hou, Y., Zhu, S., & Fu, X. (2019). Cryopreservation of farm animal gametes and embryos: recent updates and progress. Frontier of Agriculture Science and Engineering, 6(1), 42-53.

Kikuchi, K., Kaneko, H., Nakai, M., Somfai, T., Kashiwazaki, N., & Nagai, T. (2016). Contribution of in vitro systems to preservation and utilization of porcine genetic resources. Theriogenology, 86(1), 170-175.

Kuwayama, M., Holm, P., Jacobsen, H., Greve, T., & Callesen, H. (1997). Successful cryopreservation of porcine embryos by vitrification. Veterinary Record, 141(14), 365.

Maedomari, N., Kikuchi, K., Ozawa, M., Noguchi, J., Kaneko, H., Ohnuma, K., Nakai, M., Shino, M., Nagai, T., & Kashiwazaki, N. (2007). Cytoplasmic glutathione regulated by cumulus cells during porcine oocyte maturation affects fertilization and embryonic development in vitro. Theriogenology, 67(5), 983-993.

Mandawala, A.A., Harvey, S.C., Roy, T.K., & Fowler, K.E. (2016). Cryopreservation of animal oocytes and embryos: Current progress and future prospects. Theriogenology, 86(7), 1637- 1644.

Marchal, R., Feugang, J. M., Perreau, C., Venturi, E., Terqui, M., & Miemillod, P. (2001). Meiotic and developmental competence of prepubertal and adult swine oocytes. Theriogenology, 56(1), 17-29.

Mazur, P. (1984). Freezing of living cells: Mechanisms and implications. American Journal of Physiology, 247(3 Pt 1), C125- 42.

Mito, T., Yoshioka, K., Noguchi, M., Yamashita, S., Misumi, K., Hoshi, T., & Hoshi, H. (2015). Birth of piglets from in vitro-produced porcine blastocysts vitrified and warmed in a chemically defined medium. Theriogenology, 84(8),1314-1320.

Moussa, M., Shu, J., Zhang, X., Zeng, F. (2014). Cryopreservation of mammalian oocytes and embryos: current problems and future perspectives. Science China Life Sciences, 57(9), 903-914.

Nagashima, H., Kashiwazaki, N., Ashman, R.J., Grupen, C.G., & Nottle, M.B. (1995). Cryopreservation of porcine embryos. Nature, 374, 416.

Nagashima, H., Kashiwazaki, N., Ashman, R.J., Grupen, C.G., Seamark, R.F., & Nottle, M.B. (1994). Removal of cytoplasmic lipid enhances the tolerance of porcine embryos to chilling. Biology of Reproduction, 51(4), 618-622.

Nagashima, H., Yamakawa, H., & Niemann, H. (1992). Freezability of porcine blastocysts at different peri-hatching stages. Theriogenology, 37(4), 839-850.

Nguyen, H.T., Nguyen, N.T., Nguyen, L.V., Bui, X.N., Nguyen, V.H., Nguyen, V.K., Vu, H.T.T., Nguyen, S.T., & Nguyen, H.T. (2023). The effects of pretreatment with cyclosporin A and docetaxel before

vitrification of porcine immature oocytes on subsequent embryo development. Reproduction Biology, 23(4), 100798. Nguyen, H.T., Somfai, T., Hirao, Y., Dang-Nguyen, T.Q., Linh, N.V., Nguyen, B.X., Nguyen, N.T., Nguyen, H.T., Nguyen, V.H., Kaneko, H., Takagi, M., & Kikuchi, K. (2022). Dibutyryl-cAMP and roscovitine differently affect premature meiotic resumption and embryo development of vitrified immature porcine oocytes. Animal Science Journal, 93(1), e13795.

Nguyen, H.T., Somfai, T., Hirao, Y., Dang-Nguyen, T.Q., Men, N.T., Linh, N.V., Nguyen, B.X., Noguchi, J., Kaneko, H., & Kikuchi, K. (2021). The importance of cumulus cells for the survival and timing of meiotic resumption of porcine oocytes vitrified at the immature

stage. Reproduction, Fertility and Development, 33(2), 122. Nguyen, V.K., Vu, H.T.T., Nguyen, H.T., Quan, H.X., Pham, L.D., Kikuchi, K., Nguyen, S.T., & Somfai, T. (2018). Comparison of the microdrop and minimum volume cooling methods for vitrification of porcine in vitro-produced zygotes and blastocysts after equilibration in low concentrations of cryoprotectant agents. Journal of Reproduction and Developments, 64(5), 457-462.

Nohalez, A., Martinez, C.A., Parrilla, I., Maside, C., Roca, J., Gil, M.A., Rodriguez-Martinez, H., Martinez, E.A., & Cuello, C. (2018). Eventual re-vitrification or storage in liquid nitrogen vapor does not jeopardize the practical handling and transport of vitrified pig embryos. Theriogenology, 113, 229-236.

Prather, R.S., Hawley, R.J., Cater, D.B., Lai, L., & Greenstein, J.L. (2003). Transgenic swine for biomedicine and agriculture. Theriogenology, 59(1), 115-123.

Rall, W.F., & Fahy, G.M. (1985). Ice-free cryopreservation of mouse embryos at -196°C by vitrification. Nature, 313(6003), 573-575.

Somfai, T. (2024). Vitrification of immature oocytes in pigs. Animal Science Journal, 95(1), e13943.

Somfai, T., Haraguchi, S., Dang-Nguyen, T.Q., Kaneko, H., & Kikuchi, K. (2023). Vitrification of porcine immature oocytes and zygotes results in different levels of DNA damage which reflects developmental competence to the blastocyst stage. PLoS One, 18(3), e0282959.

Somfai, T., Nguyen, V.K., Vu, H.T.T., Nguyen, H.L.T., Quan, H.X., Viet Linh, N., Phan, S.L., Pham, L.D., Cuc, N.T.K., & Kikuchi, K. (2019). Cryopreservation of immature oocytes of the indigeneous Vietnamese ban pig. Animal Science Journal, 90(7), 840-848.

Somfai, T., Noguchi, J., Kaneko, H., Nakai, M., Ozawa, M., Kashiwazaki, N., Egerszegi, I., Rátky, J., Nagai, T., & Kikuchi, K. (2010). Production of good-quality porcine blastocysts by in vitro fertilization of follicular oocytes vitrified at the germinal vesicle stage. Theriogenology, 73, 147-156.

Somfai, T., Ozawa, M., Noguchi, J., Kaneko, H., Nakai, M., Maedomari, N., Ito, J., Kashiwazaki, N., Nagai, T., & Kikuchi, K. (2009). Live piglets derived from in vitro-produced zygotes vitrified at the pronuclear stage. Biology of Reproduction, 80(1), 42-49.

Somfai, T., Yoshioka, K., Tanihara, F., Kaneko, H., Noguchi, J., Kashiwazaki, N., Nagai, T., & Kikuchi, K. (2014). Generation of live piglets from cryopreserved oocytes for the first time using a defined system for in vitro embryo production. PLoS One, 9, e97731.

Vajta, G., Holm, P., Greve, T., & Callesen, H. (1997). Vitrification of porcine embryos using the open pulled straw (OPS) method. Acta Veterinaria Scandinavia, 38(4), 349-352.

Whittingham, D.G., Leibo, S.P., & Mazur, P. (1972). Survival of mouse embryos frozen to -196 degrees and -269 degrees C. Science, 178(4059), 411-414.

Yoshioka, K., Uchikura, K., Suda, T., & Matoba, S. (2020). Production of piglets from in vitro-produced blastocysts by ultrasound guided ovum pick-up from live donors. Theriogenology, 141(1), 113-119.

Yuan, Y., Spate, L.D., Redel, B.K., Tian, Y., Zhou, J., Prather, R.S., & Roberts, R.M. (2017). Quadrupling efficiency in production of genetically modified pigs through improved oocyte maturation. Proceeding of the National Academy of Science, 114, E5796-E5804.

Zhou, G.B., & Li, N. (2009). Cryopreservation of porcine oocytes: Recent advances. Molecular Human Reproduction, 15, 279-285.

Downloads

Published

2024-07-01

How to Cite

Nguyen, H.T., Somfai, T., Nguyen, B.X., Kikuchi, K., Uoc, N.T., Linh, N.V., … Hanh, N.V. (2024). Oocyte and Embryo Cryopreservation in Porcine In Vitro Production Systems . Indian Journal of Veterinary Sciences and Biotechnology, 20(4), 1–5. https://doi.org/10.48165/ijvsbt.20.4.01