Virulence Genes Detection in Streptococcus uberis and Streptococcus dysgalactiae Isolated from Bovine Mastitis in Gujarat, India
DOI:
https://doi.org/10.48165/ijvsbt.20.1.07Keywords:
Environmental pathogen, Mastitis, Streptococcus, Virulence geneAbstract
One of the most expensive illnesses in the dairy sector is mastitis. Due to decreased milk production and increased treatment costs, it generates significant financial losses to the dairy industries. Streptococcus uberis and Streptococcus dysgalactiae are two common environmental bacteria which cause bovine mastitis and have several virulence factors that play major role in pathogenicity. The objective of this study was to detect some important virulence genes of S. uberis and S. dysgalactiae. Overall, sixteen S. uberis and ten S. dysgalactiae were isolated from 320 milk samples. The virulence genes hasC, gapC and sua were found in 50%, 100% and 81.25% isolates of the S. uberis, respectively, while in S. dysgalactiae isolates, napr and eno genes were found in 60% and 20% isolates, respectively. This work helps us to understand the virulence traits and mechanisms underlying how novel mastitis strains emerge in response to preventative and curative measures.
Downloads
References
Abdelsalam, M., Fujino, M.,Eissa, A.E., Chen, S.C., & Warda, M. (2015). Expression, genetic localization and phylogenic analysis of NAPlr in piscine Streptococcus dysgalactiae subspecies dysgalactiae isolates and their patterns of adherence. Journal of Advanced Research, 6(5), 747-755.
Almeida, R. A., Dego, O.K ., Headrick, S.I., Lewis, M. J., & Oliver, S.P. (2015). Role of Streptococcus uberis adhesion molecule in the pathogenesis of Streptococcus uberis mastitis. Veterinary Microbiology, 179(3-4), 332-335.
Almeida, R.A., Luther, D.A., Patel, D., & Oliver, S.P. (2011). Predicted antigenic regions of Streptococcus uberis adhesion molecule (SUAM) are involved in adherence to and internalization into mammary epithelial cells. Veterinary Microbiology, 148(2-4), 323-328.
Chen, X., Dego, O.K., Almeida, R.A., Fuller, T.E., Luther, D.A., & Oliver, S.P. (2011). Deletion of sua gene reduces the ability of Streptococcus uberis to adhere to and internalize into bovine mammary epithelial cells. Veterinary Microbiology, 147(3-4), 426-434.
Cheng, W.N., & Han, S.G. (2020). Bovine mastitis: Risk factors, therapeutic strategies, and alternative treatments -A review. Asian-Australian Journal of Animal Science, 33(11), 1699.
Field, T.R., Ward, P.N., Pedersen, L.H., & Leigh, J.A. (2003). The hyaluronic acid capsule of Streptococcus uberis is not required for the development of infection and clinical mastitis. Infection and Immunity, 71(1), 132-139.
Fontaine, M.C., Perez-Casal, J., Song, X.M., Shelford, J., Willson, P.J., & Potter, A.A. (2002). Immunization of dairy cattle with recombinant Streptococcus uberis GapC or a chimeric CAMP antigen confers protection against heterologous bacterial challenge. Vaccine, 20(17-18), 2278-2286.
Fulde, M., Steinert, M., & Bergmann, S. (2013). Interaction of streptococcal plasminogen binding proteins with the host fibrinolytic system. Frontiers in Cells and Infectious Microbiology, 3, 85.
Gomes, F., & Henriques, M. (2016). Control of bovine mastitis: old and recent therapeutic approaches. Current Microbiology, 72, 377-382.
Hogan, J., & Smith, K.L. (2012). Managing environmental mastitis. Veterinary Clinics of North America - Food Animal Practice, 28(2), 217-224.
Jabber, N., & Bashima, M.A. (2021). Phenotypic and molecular detection of Streptococcus uberis isolated from milk of subclinical and clinical mastitis of cow in Basrah city. Annals of Romanian Society for Cell Biology, 25(6), 504-522.
Kabelitz, T., Aubry, E., Van Vorst, K.,Amon, T., & Fulde, M. (2021). The role of Streptococcus spp. in bovine mastitis. Microorganisms, 9(7), 1497.
Kaczorek, E., Małaczewska, J., Wójcik, R., & Siwicki, A.K. (2017). Biofilm production and other virulence factors in Streptococcus spp. isolated from clinical cases of bovine mastitis in Poland. BMC Veterinary Research, 13(1), 1-7.
Kromker, V., Reinecke, F., Paduch, J.H., & Grabowski, N. (2014). Bovine Streptococcus uberis intramammary infections and mastitis. Clinical Microbiology: Open Access, 3(4), 1000157.
Moshynskyy, I., Jiang, M., Fontaine, M.C., Perez-Casal, J.,Babiuk, L.A., & Potter, A.A. (2003). Characterization of a bovine lactoferrin binding protein of Streptococcus uberis. Microbial Pathogenesis, 35(5), 203-215.
Parasana, D.K., Javia, B.B., Fefar, D.T., Barad, D.B., & Ghodasara, S.N. (2022). Detection of virulence associated genes in Streptococcus agalactiae isolated from bovine mastitis. Iranian Journal of Veterinary Research, 23(3), 275-279.
Parin, U., Ciçek, E., Yükseldolgun, H.T., & Kirkan, S. (2017). Detection of virulence genes in Streptococcus uberis isolated from bovine mastitis in Aydın Province by multiplex polymerase chain reaction. Fırat Üniversitesi Sağlık Bilimleri Veteriner Dergisi, 31(3), 213-219.
Pawanjit, S., Rajesh, N., Amit, K., & Vijay, P. (2018). Isolation and molecular characterization of 181 pathogens associated with mastitis in Sahiwal cows. Ruminant Science, 7(1), 43-46.
Reinoso, E.B., Lasagno, M.C., Dieser, S.A., & Odierno, L.M. (2011). Distribution of virulence-associated genes in Streptococcus uberis isolated from bovine mastitis. FEMS Microbiology Letter, 318(2), 183-188.
Rosey, E.L., Lincoln, R.A., Ward, P.N., Yancey Jr, R.J., & Leigh, J.A. (1999). PauA: A novel plasminogen activator from Streptococcus uberis. FEMS Microbiology Letter, 178(1), 27-33.
Savita, S.A., Nayak, T.C., Chahar, A., Yadav, R., & Kachhawa, J.P. (2020). Isolation and identification of bacteria in subclinical mastitis in cattle from Bikaner city. Ruminant Science, 9(1), 45-48.
Shabaz, S.S., Prameela, D.R., Sreenivasulu, D., & Sujatha, K. (2020). Evaluation of on-farm milk culture system for identification of mastitis pathogens. Ruminant Science, 9(2), 363-372.
Shen, J., Wu, X., Yang, Y., Lv, Y., Li, X., Ding, X.,Wang, S., Yan, Z., Yan, Y., Yang, F., & Li, H. (2021). Antimicrobial resistance and virulence factor of Streptococcus dysgalactiae isolated from clinical bovine mastitis cases in northwest China. Infection and Drug Resistance, 14, 3519-3530.
Smith, A.J., Kitt, A.J., Ward, P.N., & Leigh, J.A. (2002). Isolation and characterization of a mutant strain of Streptococcus uberis, which fails to utilize a plasmin derived β-casein peptide for the acquisition of methionine. Journal of Applied Microbiology, 93(4), 631-639.
Ward, P.N., Field, T.R., Ditcham, W.G., Maguin, E., & Leigh, J.A. (2001). Identification and disruption of two discrete loci encoding hyaluronic acid capsule biosynthesis genes hasA, hasB, and hasC in Streptococcus uberis. Infection and Immunity, 69(1), 392-399.
Zhang, H., Feng, Y., Li, X.P., Luo, J.Y., Ling, W., Zhou, Y.L., Yong, Y., Wang, X.R., & Li, H.S. (2020). Detection of antimicrobial resistance and virulence-related genes in Streptococcus uberis and Streptococcus parauberis isolated from clinical bovine mastitis cases in northwestern China. Journal of Integrated Agriculture, 19(11), 2784-2791.
Zouharova, M., Nedbalcova, K., Slama, P., Bzdil, J., Masarikova, M., & Matiasovic, J. (2022). Occurrence of virulence-associated genes in Streptococcus uberis and Streptococcus parauberis isolated from bovine mastitis. Veterinary Medicine (Praha), 67(3), 123-130.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Indian Journal of Veterinary Sciences & Biotechnology
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.