In vitro anthelmintic efficacy of Acacia nilotica pods on eggs and adult worms of Haemonchus contortus

Authors

  • G Zabre Normal High School (ENS), Department of Science, Institute of Science and Technology, Koudougou, Burkina Faso.
  • B Tindano University Joseph KI-ZERBO (UJKZ), Department of Animal Biology and Animal Physiology, Laboratory of Animal Physiology, Ouagadougou, Burkina Faso.
  • A Dicko National Center for Scientific and Technological Research (CNRST), Department of Animal Production, Ouagadougou, Burkina Faso.
  • B Bayala University Joseph KI-ZERBO (UJKZ), Department of Animal Biology and Animal Physiology, Laboratory of Animal Physiology, Ouagadougou, Burkina Faso.
  • A Kaboré National Center for Scientific and Technological Research (CNRST), Department of Animal Production, Ouagadougou, Burkina Faso
  • A M G Belem Nazi Boni University, Institute of Rural Development (IRD), Bobo Dioulasso, Burkina Faso.
  • H H Tamboura National Center for Scientific and Technological Research (CNRST), Department of Animal Production, Ouagadougou, Burkina Faso.

DOI:

https://doi.org/10.48165/ijvsbt.19.6.18

Keywords:

Acacia nilotica, Anthelmintic, Gastrointestinal nematodes, Haemonchus contortus

Abstract

Gastrointestinal nematodes are major pathologies in small ruminants. The aime of the present study was  to evaluate  the in vitro anthelmintic effect of aqueous and acetone extracts of pods of Acacia nilotica on the eggs and adult worms of Haemonchus contortus. Eggs and worms were exposed to five increasing concentrations (1.25; 2.5; 5; 10 and 20 mg/mL). The results showed dose-dependent ovicidal (P<0.001) and vermicide (P<0.05) activity against H. contortus. For the egg hatch inhibition assay (EHA), the rate of inhibition were ranging from 31 to 70% for aqueous extracts and from 41 to 81% for acetone extract. Benzal have obtained the highest inhibition rate of 91%. For adult nematode mortality test (AMT), no mortality was recorded between 0h and 2h in all group treated as well as the two controls. Mortalities were recorded from the 4th and 6th hour of incubation. Concentrations of 10 and 20 mg/mL recorded the highest mortality rates (>80%) after 4 h of incubation. These results suggest that A. nilotica pods can be used in the control of gastrointestinal nematodes.

Downloads

Download data is not yet available.

References

Andrea, B., Doeschl-Wilson., Davidson, R., Conington, J., Rugueux, T., Hutchings, M., Villanueva, B. (2011). Implications of host genetic variation on the risk and prevalence of infectious diseases transmitted through the environment. Journal of Genetics, 188 (3), 683-693.

Ashenafi, A., Ysehak, K., Taye, T., Assefa, K., Eshetu, S. (2017). Anthelmintic effects of indigenous multipurpose fodder tree extracts against Haemonchus contortus. Tropical Animal Health Production, 50, 727-732.

Ayers, S., Zink, D.L., Mohn, K., Powell, J.S., Brown, C.M., Murphy, T., Brand, R., Pretorius, S., Stevenson, D., Thompson, D., Singh, S.B. (2008). Flavones from Struthiola argentea with anthelmintic activity in vitro. Phytochemistry, 69 (2), 541-545.

Bachaya, H.A., Iqbal, Z., Khan, MN., Sindhu, Z.U.D., Jabbar, A. (2009). Anthelmintic activity of Ziziphus nummularia (bark) and Acacia nilotica (fruit) against Trichostrongylid nematodes of sheep. Journal of Ethnopharmacology, 123 (2), 325-329.

Badar, N., Iqbal, Z., Khan, M,N., Akhtar, M.S. (2011). In vitro and in vivo anthelmintic activity of Acacia nilotica (L.) willd. ex delile bark and leaves. Pakistan Veterinary Journal, 31 (3), 185-191.

Barrau, E., Fabre, N., Fouraste, I., Hoste, H. (2005). Effect of bioactive compounds from sainfoin (Onobrychis viciifolia Scop.) on the in vitro larval migration of Haemonchus contortus: role of tannins and flavonol glycosides. Parasitology, 131 (4), 531-538.

Boly, A.G.l., Belemlilga, M.B., Traore, A., Ouedraogo, S., Guissou, E.T.I.P. (2018). Phytochemical Study and In vitro Anthelminthic Properties Studies of the Trunk Barks Aqueous Extract from Acacia Nilotica Var. Adansonii (Guill & Perr). O Ktze (Mimosaceae). International Journal of Pharmacognosy and Phytochememical Research, 10, 5-10. doi: 10.25258/phyto.10.1.2

Coles, G.C., Jackson, F., Pomroy, W.E., Prichard, R.K., Samson-Himmelstjerna, G.V., Silvestre, A., Taylor, M.A., Vercruysse, J. (2006). The detection of anthelmintic resistance in nematodes of veterinary importance. Veterinary Parasitology, 136 (3-4), 167-185.

Chaibou, M., Abdoul, N. M. B., Idrissa, M., Amadou, Tidjani, I., Ikhiri, K. (2020). Etude Bibliographique et Phytochimique de Quelques Plantes Médicinales Utilisées Pour Le Traitement de Certaines Maladies par les Tradipraticiens de la Zone de l’Azawagh au Niger. Faculté des Sciences et Techniques, Université Abdou Moumouni. (27pp). doi:10.19044/esj.2020.v16n6p126.

Devendra, B.N., Srinivas, N., Prasad-Talluri, V.S.S.L., Swarna Latha, P. (2011). Antimicrobial activity of Moringa oleifera Lam, leaf extract, against selected bacterial and fungal strains. International Journal of Pharma and Bio Sciences, 2, 13-18.

Eguale, T., Tilahun, G., Gidey, M., Mekonnen, Y. (2006). In vitro anthemintic activities of four ethiopian medicinal plants against Haemonchus contortus. Phamacologyonline. 3,153-165.

Eichstadt, M. (2017). Evaluation de la résistance des strongles gastro-intestinaux aux anthelminthiques dans quatre élevages ovins allaitants de Corrèze. Ecole Nationale Vétérinaire de Toulouse - ENVT.

Fournier, A. (2020). Etude de la résistance aux anthelminthiques des nématodes gastro-intestinaux chez le mouton en Wallonie. Master en médecine vétérinaire, Université de Liège, Belgique. (49pp).

Hounzangbe-Adote, M.S., Paolini, V., Fouraste, I., Moutairou, K., Hoste, H. (2005a). In vitro effects of four tropical plants on three life-cycle stages of the parasitic nematode, Haemonchus contortus. Research in Veterinary Science, 78 (2), 155-160.

Hounzangbe-Adote, M.S., Moutairou, K., Hoste, H. (2005b). In vitro effects of four tropical plants on three stages of the parasitic nematodes, Trichostrongylus colubriformis. Journal of Helminthologie, 79 (1), 29-33.

Hoste, H., Torres-Acosta, J.F.J., Paolini, V., Aguilar-Caballero, A., Etter, E., Lefrileux, Y., Chartier, C., Broqua, C. (2005). Interactions between nutrition and gastrointestinal infections with parasitic nematodes in goats. Small Ruminant Research, 60 (1-2), 141-151.

Hoste, H., Torres-Acosta, J.F.J., Sandoval-Castro, C.A., Mueller-Harvey, I., Sotiraki, S., Louvandini, H., Thamsborg, S.M., Terrill, T.H. (2015). Tannin containing legumes as a model for nutraceuticals against digestive parasites in livestock. Veterinary Parasitology, 212 (1-2), 5-17.

Husori, D.I., Sumardi., Tarigan, H., Gemasih, S., Ningsih, S.R. (2018). In vitro Anthelmintic Activity of Acanthus ilicifolius Leaves Extracts on Ascaridia galli and Pheretima posthuma. Journal of Applied Pharmaceutical Science, 8 (2), 164-167.

Jabbar, A., Iqbal, Z., Nisar Khan, M. (2006b). In vitro anthelmintic activity of Trachyspermum ammi seeds. Pharmacognosy Magasine, 6, 126-129.

Jackson, F., Hoste, H. (2010). In Vitro Screening of Plant Resources for Extra-Nutritional Attributes in Ruminants: Nuclear and Related Methodologies. Eds.Vercoe P. E., Makkar H. P. S., Schlink A. FAO/IAEA.

Kaboré, A., Belem, A.M.G., Tamboura, H.H., Traoré, A., Sawadogo, L. (2009). In vitro anthelmintic effect of two medicinal plants (Anogeissus leiocarpus and Daniellia oliveri) on Haemonchus contortus, an abomasal nematode of sheep in Burkina Faso. African Journal of Biotechnology, 8 (18), 4690-4695.

Kahiya, C., Mukaratirwa, S., Thamsborg, S.M. (2003). Effects of Acacia nilotica and Acacia karoo diets on Haemonchus contortus infection in goats. Veterinary Parasitology, 115 (3), 265-274.

Koné, M., Dahafolo. (2009). Etude de la phytochimie et des activités larvicide, anticholinesterasique et antioxydante des extraits de quatre plantes du Mali : Acacia nilotica Guill. et Perr. (Mimosaceae), Calotropis procera (Ait.) Ait.f. (Asclepiadaceae), Euphorbia sudanica A. Chev (Euphorbiaceae) et Hyptis suaveolens (L.) Poit (Lamiaceae). Thèse de doctorat, republique du Mali. (123pp).

Keita, S., Yaya, B., Méminata, D., Lassana, S., Moriba, D., Mamado W. (2021). Étude phytochimique et activité antibactérienne des extraits de fruits de Acacia nilotica Var. (Guill et Per.) sur des souches cliniques des infections urinaires à Bamako au Mali. African Science journal, 18, 260-272.

Martin, J. (1997). Modes of action of anthelmintic drugs. Veterinary Journal, 154 (1), 11-34.

Ndiaye, S., Bassene, E., Olschwang, D., Pousset, J. (1994). Fruits d’Acacia nilotica comme source de tanins et d’acide gallique. Al-Biruniya. 10, 117-122.

Prichard, R. (1994). Anthelmintic resistance. Veterinary Parasitology, 54 (1-3), 259-268.

Segda, R. (2020). Efficacité anthelminthique in vitro de Balanites aegyptiaca sur trois stades de développement de Haemonchus contortus, parasite nématode de la caillette des petits ruminants. Mémoire de master, Université Joseph KI-ZERBO. (43pp).

Seremé, A., Millogo-Rasolodimby, J., Guinko, S., Nacro, M. (2008). Propriétés thérapeutiques des plantes à tanins du Burkina Faso. Pharmacopée et Médecine traditionnelle Africaines, 15, 41-49.

Shaddad, S.A., Intisar, A.M.O., Goreish, I., Elamin, T.H., Eltayeb, I.B. (2013). Anthelmintic activity of Balanites aegyptiaca against Haemoncus contortus in goats. Journal of Pharmaceutical and Biomedical Science, 30, 1065-1070.

Skantar, A.M., Agama, K., Meyer S.L.F., Carta L.K., Vinyard B.T. (2005). Effects of geldanamycin on hatching and juvenile motility in Caenorhabditis elegans and Heterodera glycines. Journal of Chemical Ecology, 31, 2481-2491.

Zabré, G., Kaboré, A., Bayala, B., Katiki, L.M., Costa-Júnior, L.M., Tamboura, H.H., Belem, A.M.G., Abdalla, A.L., Niderkorn, V., Hoste, H., Louvandini, H. (2017). Comparison of the in vitro anthelmintic effects of Acacia nilotica and Acacia raddiana. Parasite. 24, 44

Published

2023-11-08

How to Cite

Zabre, G., Tindano, B., Dicko, A., Bayala, B., Kaboré, A., Belem, A.M.G., & Tamboura, H.H. (2023). In vitro anthelmintic efficacy of Acacia nilotica pods on eggs and adult worms of Haemonchus contortus. Indian Journal of Veterinary Sciences and Biotechnology, 19(6), 90–94. https://doi.org/10.48165/ijvsbt.19.6.18