First Report of Molecular Identification of *Prototheca zopfii* Genotype 2 as Causative Agent of Bovine Mastitis in Navsari, South Gujarat, India

Pushpa M. Makwana¹*, Dharmesh R. Patel¹, Dixit K. Parasana¹, Saurabh. M. Parmar², Irsadullahkhan H. Kalyani³, Mahendra Pal³

**ABSTRACT**

*Prototheca* species is emerged as an important causative agent for bovine mastitis worldwide, and is responsible for great economic losses for dairy industry. A 5-year-old HF cow was referred to the Veterinary Clinical Complex of the College, Navsari (India) with a complaint of watery milk with flakes, anorexia and drop in milk production. On physical examination, udder appeared warm and swollen, while milk consistency was thin, watery with flakes. Milk sample obtained aseptically from the cow was inoculated aerobically on Sabouraud dextrose agar and blood agar plates. *Prototheca* colonies grew in pure and luxuriant form from mastitic milk on both the plates after 48 h of incubation. *Prototheca zopfii* was identified on the basis of colony morphology, staining characters and biochemical reactions. Molecular confirmation of *Prototheca zopfii* genotype 2 was performed by employing polymerase chain reaction (PCR). This report presents first isolation and molecular identification of *Prototheca zopfii* genotype 2 from a case of bovine mastitis from Navsari region, South Gujarat, India.

**Keywords:** Algae, Blood agar, Mastitis, PCR, Sabouraud medium.

*Ind J Vet Sci and Biotech.* (2022): 10.48165/ijvsbt.18.5.23

**INTRODUCTION**

Mastitis is globally an important production disease of dairy cows (FAO, 2014) and one of the major causes of economic losses to dairy farmers. Economic losses due to mastitis include decrease in milk production, lower milk quality, premature culling and treatment costs. Globally loss of 5100.75 to 8111.03 Rs per cow due to clinical mastitis has been reported (Hogeveen *et al*., 2011). In India, annual economic losses due to subclinical and clinical mastitis have been estimated to be Rs. 4151.1 and Rs. 3014.4 crores, respectively, with a total of Rs. 7165.5 crores (Bansal and Gupta, 2009). A wide variety of microorganisms including bacteria, fungi, yeast, and mycoplasma are responsible for causing mastitis (Bhat *et al*., 2017) and the occurrence depends on variables related to the animal, pathogen and environment (Radostits *et al*., 2007; Pal *et al*., 2019).

*Prototheca* species is considered as unicellular, achlorophyllic yeast-like algae that are normally found as saprophytes. *Prototheca* organisms are ubiquitous in nature and more variable in size and shape (Pal, 2007; Pal *et al*., 2014). Protothecal bovine infection is gradually progressive and often subclinical, making it difficult to recognize at early stage. It leads to mild changes in milk, with an increase in somatic cell counts (SCC), reduced milk production and a thin watery milk secretion containing white flakes (Cremonesi *et al*., 2012). Majority of *Prototheca* isolates from bovine mammary protothecosis came from *P. zopfii* genotype 2 and considered as to be the major causative agent of mastitis in dairy cows (Möller *et al*., 2007; Osumi *et al*., 2008; Bozzo *et al*., 2014; Capra *et al*., 2014; Milanov *et al*., 2016). Bovine mammary protothecosis leads to subclinical and clinical mastitis. So far, *P. zopfii* has been isolated worldwide from milk of cows with clinical and subclinical mastitis (Costa *et al*., 1996; Malinowski *et al*., 2002). Treatment for protothecal infections remains controversial, various therapeutic regimens have been attempted but without consistency in the clinical responses.
First Report of Molecular Identification of *Prototheca zopfii* Genotype 2 as Causative Agent of Mastitis

(Buzzini et al., 2008). Pal and Lee (1997) are credited to record protothecal mastitis in a 7-year-old HF cow for the first time in India. The algae was isolated in pure and luxuriant growth on blood agar as well as Sabouraud dextrose agar medium and the detailed microscopic morphology of the isolate was studied in PHOL (Pal, Hasegawa, Ono, Lee) stain (Pal et al., 1990). This communication delineates the first report of molecular identification of *Prototheca zopfii* genotype 2 as causative agent of bovine mastitis in Navsari, South Gujarat, India.

**Materials and Methods**

A 5-year-old HF cow was referred to the Veterinary Clinical Complex, Veterinary College, Navsari (India) with a complaint of watery milk with flakes. The history revealed that animal was calved a month before and then after thin watery milk with flakes were observed along with anorexia and drop in milk production. The antibacterial and anti-inflammatory treatment was given repeatedly at field level that was found unresponsive. On physical examination, warm and swollen udder and thin watery milk with flakes was noticed. Aseptically collected milk sample was taken for cultural isolation and identification of the organisms. Primarily milk sample was inoculated on blood agar and incubated aerobically at 37°C for 24 h to rule out bacterial organisms. Also the sample was inoculated on Sabouraud dextrose agar (SDA) and aerobically incubated at 37°C. Colonies were observed on both the agar plates after 48 h of incubation. Microscopically, colonies were identified on the basis of wet mount preparation with lactophenol cotton blue (LPCB) and smear stained with methylene blue and Gram’s stain. Biochemically *Prototheca* spp. was confirmed by Galactose –ve, Glucose +ve and Trehalose –ve reactions (Fig. 5).

*Prototheca* spp. as well as *Prototheca zopfii* genotype 2 were successfully amplified and confirmed with N476-F and N476-R (amplicon size 216 bp) and N2-F and N2-R (amplicon size 508 bp), respectively (Fig. 6).

Bovine protothecal mastitis is characterized by deteriorating milk quality and quantity, thus imparting huge economic losses to dairy industry (Shahid et al., 2017). Protothecosis, mostly caused by *Prototheca zopfii* appears in the clinical and subclinical form of mastitis in dairy cattle (Ahrholdt et al., 2012). Acute clinical form of protothecal mastitis is generally characterized by high temperature (up to 40 °C), pain and hot oedema of the udder, anorexia and reluctance to move. In chronic form, slight pain, hard tissue consistency with pasty oedema in the udder, along with marked decrease in milk production with elevated somatic cell count, especially macrophages, is observed, which may

![Fig. 1: *Prototheca* colonies on blood agar after 48 h of incubation](image1)

![Fig. 2: Several colonies of *Prototheca* grew on Sabouraud dextrose agar after 48 h of incubation](image2)
First Report of Molecular Identification of *Prototheca zopfii* Genotype 2 as Causative Agent of Mastitis

The Indian Journal of Veterinary Sciences and Biotechnology, Volume 18 Issue 5 (November-December 2022)

even lead to culling of cow and ultimately result in high economic losses (Wawron *et al*., 2013). In the dry period, especially immediately before and after parturition, the mammary gland is highly susceptible to infections caused by environmental microorganisms (Cengiz and Bastan, 2015). It is important to mention that an open teat sphincter as well as some minute teat lesions caused by milking equipment constitutes a potential portal of entry of the infection (Milanov *et al*., 2016).

Diagnosis of protothecal mastitis depends on isolation and identification of the agent, but in many microbiology laboratories isolation and identification of *P. zopfii* from cow milk is not followed as routine practice. Protothecosis has traditionally been diagnosed by microscopic observation and physiological/biochemical tests of the isolated organism or pathological examination of the affected tissue (Pal and Lee, 1997; Pal, 2007). Recently, introduction of PCR and nucleotide sequencing of the ribosomal RNA gene (rDNA) has facilitated species identification of *Prototheca* (Hirose *et al*., 2018).

*Prototheca zopfii* grows readily on conventional laboratory media, such as blood agar, MacConkey and Sabouraud dextrose agar (Pal, 2007). The growth of *P. zopfii* on Sabouraud dextrose agar can be observed after 24-48 h at incubation temperatures between 25°C and 37°C (Milanov *et al*., 2016).

Protothecosis is also important from public health point of view, as *P. zopfii* could be transmitted to humans through consumption of contaminated milk and cause intestinal infection and enteritis (Melville *et al*., 1999) because of its resistance to pasteurization (Zaini *et al*., 2012).

**Conclusions**

Mastitis is one of the most important economic diseases of dairy animals, so accurate and timely diagnosis of causative organisms has great significance. Colony PCR is a quick, easy and economic technique of great advantage for *Prototheca* species identification from field isolates. As case reports as well as isolation studies of *Prototheca* species were recorded globally and importance of this pathogen in bovine mastitis cases, clinicians should be aware of this remarkable organism.

**Acknowledgements**

Authors are thankful to authorities of Kamdhenu University and Dean, Dr. V. B. Kharadi, College of Veterinary Science and A.H., Kamdhenu University, Navsari, for providing necessary funds and support and also thankful to Mrs. Amisha Chaudhary and Mrs. Akruti Naik lab technicians for their help.
First Report of Molecular Identification of *Prototheca zopfii* Genotype 2 as Causative Agent of Mastitis