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of estimates, and reduces the risk of false positives or false 
negatives. Quality pruning helps mitigate biases introduced 
by population structure and admixture, by applying quality 
control measures, researchers can better identify true 

In t r o d u c t I o n

In the field of animal genetics and breeding, the utilization 
of high-throughput genotyping technologies, such as SNP 

arrays, has significantly advanced our understanding of genetic 
diversity, evolutionary relationships, and breeding strategies 
within different livestock populations (Fan et al., 2010). 

Quality pruning of genotyping data and the removal 
of outlier individuals are critical steps in genetic analysis 
and research (Weale, 2010). These processes ensure the 
reliability, accuracy, and integrity of the data, which in turn 
have a profound impact on the validity and meaningfulness 
of subsequent analyses. Quality pruning involves applying 
stringent criteria to filter out low-quality or unreliable 
genotyping data and this includes removing SNPs with 
high missing rates, those deviating from Hardy-Weinberg 
equilibrium, and those with low minor allele frequencies 
(Pavan et al., 2020). Similarly, the removal of outlier individuals 
eliminates data points that may be erroneous due to 
experimental or biological factors (Motulsky and Brown, 
2006). By discarding such data, researchers ensure that 
the remaining dataset accurately reflects the true genetic 
makeup of the population under study (Gress et al., 2018). 
Pruning poor-quality SNPs and outliers reduces the noise and 
biases that can distort results (Guo et al., 2013). This, in turn, 
enhances the power of statistical tests, increases the precision 
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Ab s t r Ac t
Advancements in animal genetics, propelled by high-throughput genotyping methods like SNP arrays, have significantly expanded our 
understanding of genetic diversity, evolution, and livestock breeding. Low-density SNP chips offer a cost-effective means of genotyping 
large populations simultaneously. While Venn diagrams are a valuable tool for data exploration, they typically provide static views of 
up to datasets. Venn diagrams illustrated the proportions of common SNPs, distinguishing unique and shared SNPs across datasets. In 
this study, we aimed to develop low-density SNP panels of varying densities using Ovine 50K SNP Bead Chip data from Indian, Asian, 
and exotic sheep breeds, (a) Select unique and breed specific common SNP via Quality pruning and (b) select 20k panel Using Venn 
diagram through four methods. Genotyping data were sourced from publicly available databases, consortiums, and datasets referenced 
in scientific literature. To facilitate our analysis, we merged three sets of sheep breeds into four combinations using appropriate merger 
commands within the PLINK software. These four datasets underwent quality pruning based on various parameters and thresholds. 
We generated informative SNP panels for each dataset using the TRES approach, employing the delta, FST, info and combine method 
to rank markers that distinguish between the underlying breeds. Our findings, obtained through the all four methods, indicated that 
the 20K SNP panel outperformed the 50K panel in distinguishing common SNPs between Asian, Indian, and exotic sheep breeds. The 
incorporation of these practices elevates the validity and applicability of genetic insights, fostering informed decision-making and 
propelling advancements in animal genetics and breeding.
Key words: Genetic diversity, Quality pruning, Ovine 50K SNP BeadChip, SNP arrays, Venn diagram 
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genetic signals and accurately assess population-specific 
traits (Fuentes-Pardo and Ruzzante, 2017). Venn diagrams 
are used to illustrate the unique and shared SNPs among 
different sheep breeds or populations. This helps researchers 
understand the genetic diversity and relatedness between 
breeds. For example, a Venn diagram can show which SNPs 
are exclusive to one breed and which are common between 
two or more breeds (Crispim, 2019).

This study aimed to investigate the pure SNP densities 
within Indian, Asian, and exotic sheep breeds using the Ovine 
50K SNP BeadChip data.

MAt e r I A l s A n d Me t h o d s

The genotyping data utilized in this study were sourced from 
publicly available databases, consortiums, and datasets present 
in the scientific literature (DataSheet:Agrigenomics;https://
www.illumina.com/documents/products/datasheets/
datasheet_ovinesnp50.pdf). The Ovine 50K SNP BeadChip, 
which encompasses a total of 54,241 markers, was employed 
to generate array data for the different sheep breeds. Four 
distinct datasets were created based on breed composition:

1. Dataset A: Indian sheep breeds only
2. Dataset B: Indian and Asian sheep breeds
3. Dataset C: Indian and exotic (non-Asian) sheep breeds
4. Dataset D: Indian, Asian, and exotic sheep breeds

Quality pruning of the genotyping data was performed to 
ensure the reliability and accuracy of downstream analyses. 
The following thresholds were applied for quality control using 
the plink software (Whole genome association analysis toolset, 
2023): Autosomal coordinates and missing rate per person 
(--mind 0.1); Minor allele frequency (--maf< 0.05); Missing rate 
per SNP (--geno 0.1); Hardy-Weinberg equilibrium (--hwe 0.001); 
Mendel error rate (--me 0.05 or 0.1)

The genotyping data underwent processing with TRES 
software to create rankings of markers that distinguish 
between the various breeds in separate datasets. For each 
dataset, lists containing the top 1000, 3000, 5000, 10000, and 
20000 SNP markers were generated according to the criteria 
mentioned above.

Multiple techniques (including combine, info, fst, and 
delta) and datasets were utilized to identify common Single 
Nucleotide Polymorphisms (SNPs) across diverse sheep 
breeds. These selected SNPs were then compared using 
Venn diagrams, which were created using web-based tools. 
These Venn diagrams facilitated the recognition of SNPs 
that were either unique to specific sheep breeds or shared 
among them.

re s u lts A n d dI s c u s s I o n

In this study, the genotypic data of 8 sheep breeds were taken 
from the public repository and classified into four different 
groups including dataset A includes Indian sheep breeds, 
dataset B includes Indian and Asian sheep breeds, dataset C 
includes Indian and exotic (other than Asian) sheep breeds 
and dataset D includes Indian, Asian and exotic sheep breeds, 
respectively. Quality pruning was done on each dataset 
based on thresholds as autosomal coordinates and missing 
rate per person (--mind 0.1), minor allele frequency (--maf 
<0.05), missing rate per SNP (--geno 0.1), Hardy-Weinberg 
equilibrium (--hwe 0.001), Mendel error rate (--me 0.05 or 0.1) 
with plink software (Table 1).

A total of 8,764 SNP markers were removed from dataset 
A on using above thresholds. --autosome (3,565 SNP markers 
were removed), --mind 0.1 (no removal of markers), --maf 
0.05 (3,650 SNP markers were removed), --geno 0.1; (1.00 
SNP markers were removed), --hwe 0.001; (1,548 SNP markers 
were removed), --me 0.05 0r 0.1; (no removal of markers). 
Genotyping rate of data set A was 0.999622 or 99.96%, A total 
of 41620 markers were left in Dataset A after quality pruning 
for downstream analysis.

A total of 11,201 SNP markers were removed from 
dataset B on using above thresholds. --autosome (3,565 SNP 
markers were remove), --mind 0.1 (no removal of markers), 
--maf 0.05 (3,845 SNP marker were remove), --geno 0.1 (0.00 
SNP marker were removed), --hwe 0.001 (3,791 SNP marker 
were removed), --me 0.05 0r 0.1 (no markers removed). 
Genotyping rate of data set B was 99.97%. A total of 39183 
markers were left in dataset B after quality pruning for 
downstream analysis.

Table 1: Quality pruning results and filtered SNP markers for different datasets

Dataset
Original 

number SNP 
marker

SNPs with 
known autoso-

mal coordi-
nates

Missing rate 
per person 
of 10% and 

below

Minor allele 
frequency 

of 0.05 and 
below

Missing rate 
per SNP of 
10% and 

below

HWE with 
p value of 

0.001

Mendel 
error rate

Filtered 
SNPs

Dataset A 50384 46819 46819 43169 43168 41620 41620 41620

Dataset B 50384 46819 46819 42974 42974 39183 39183 39183

Dataset C 50384 46819 46819 45330 45330 38791 38791 38791

Dataset D 50384 46819 46819 45323 45323 34640 34640 34640

SNPs filtering parameters: Unmapped, X, Y, Mt SNPs, SNP CR (< 0.001) Mt: Mitochondria, MAF: Minor Allele Frequency, HWE: Hardy Weinberg Equilibrium
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A total of 11,593 SNP markers were removed from 
dataset C on using above thresholds. --autosome (3,565 SNP 
markers were removed), --mind 0.1 (no removal of markers), 
--maf 0.05, (1,489 SNP markers were removed), --geno 0.1 
(0.00 SNP markers were removed), --hwe 0.001 (6,539 SNP 
markers were removed), --me 0.05 0r 0.1 (no markers were 
removed). Genotype rate of data set C was 99.98%. A total 
of 38791 markers were left in Dataset C after quality pruning 
for downstream analysis. 

A total of 15,744 SNP markers were removed from 
dataset D on using above thresholds. --autosome (3,565 
SNP markers were removed),--mind 0.1 (no markers were 
removed), --maf 0.05 (1,496 SNP markers were removed), 
--geno 0.1 (no markers were removed), --hwe 0.001 (10,683 
SNP markers removed), --me 0.05 0r 0.1 (no markers were 
removed). Genotyping rate of data set D was 98.98%. A total 
of 34640 markers were left in dataset D after quality pruning 
for downstream analysis.Quality pruning of each data set was 
done according to Ahmad et al. (2021). After quality control, a 
total of 41620, 39,183, 38791, and 34640 SNPs were retained 
for dataset A, dataset B, dataset C, and dataset D, respectively.

In this study, the removal of SNP markers based on 
established thresholds, such as missing rates, minor allele 
frequency, and Hardy-Weinberg equilibrium, led to the 
retention of high-quality SNP markers for each dataset.
The creation of distinct datasets, encompassing different 
combinations of Indian, Asian, and exotic sheep breeds, 
allowed for the investigation of evolutionary relationships 
and genetic diversity within and across these populations. 
The findings from this study contribute to a deeper 
understanding of the genetic makeup of Indian sheep 
breeds and their relationships with both regional and 
exotic counterparts as also found by Ahmad et al. (2021). 
Furthermore, the identification of pure SNPs densities and 
genetic variations within these sheep breeds has significant 
implications for India’s small ruminant breeding policies. 
These insights can inform decisions related to breed 
improvement, conservation efforts, and the development 
of targeted breeding strategies to enhance desirable traits 
and overall livestock productivity.

Common SNPs were identified across datasets A, B, C, 
and D, with variations in these SNPs distinguishing between 
Asian, exotic, and Indian sheep breeds. Utilizing different 
analytical methods, the following percentages of common 
SNPs were observed in all four datasets, including 1K, 3K, 5K, 

10K, and 20K using Venn diagram. Venn diagram was plotted 
to depict the common SNPs belonging to all four datasets 
under the study. 

The Combine method revealed 79 (1.97%), 463 (8.61%), 
1034 (5.17%), 3,067 (7.66%), and 9,164 (11.45%) SNPs were 
common between datasets A, B, C and D at 1k, 3k, 5k, 10k, 
20k panels orderly (Table 2). The Delta method indicated 
66 (1.65%), 432 (3.6%), 970 (4.85%), 2,998 (7.49%), and 9,433 
(11.79%) SNPs were common between datasets A, B, C and 
D at 1k, 3k, 5k, 10k, 20k panels orderly (Table 2). The FST 
method yielded 19 (0.47%), 153 (1.27%), 482 (2.41%), 1,989 
(4.97%), and 7,790 (9.73%) SNPs were common between 
datasets A, B, C and D at 1k, 3k, 5k, 10k, 20k panels orderly 
(Table 2). The Information method analysis showed 73 
(1.8%), 416 (3.46%), 935 (4.67%), 2,838 (7.09%), and 8,731 
(10.91%) SNPs were common between datasets A, B, C and D 
at 1k, 3k, 5k, 10k, 20k panels orderly (Table 2).  In all datasets 
20 k panels have more unique and common breed specific 
SNP showing at figure 1, 2, 3 and 4. Venn diagram represents 
the overlap of genetic data at the same genomic position. 
Czech et al. (2018) also reported the number of common 
SNPs among various breed combinations. Specifically, 
23,113 filtered SNPs were common to each breed, indicating 
a polymorphic characteristic in the Domino lineage but 
monomorphic in other breeds.

Moura et al. (2019) conducted a study involving two groups 
of goats to identify common and unique SNPs in the Moreta 
and Anglo Nubian goat breeds. Our work is in alignment 
with their research, as we also aimed to investigate common 
and unique SNPs within sheep breeds. Kranis et al. (2013) 
demonstrated the presence of overlapping SNPs between 
broiler, layer, and inbred lines, as well as between broiler, 
WEL, and BEL. Approximately 23% of the 10 million SNPs were 
identified as shared among broiler, layer, and inbred lines, while 
31% of the SNPs were found to be common between broiler, 
BEL, and WEL. The size of the circles in Venn diagrams also 
visually reflects the relative proportions of SNPs contributed 
by different groups within the 10 million SNP dataset.

Employing quality pruning techniques, we carefully 
selected SNPs to mitigate bias. Subsequently, we applied 
the Delta, FST, Combine, and Information (Info) methods, 
visualizing the results through Venn diagrams, to uncover 
common and unique SNPs. These SNPs provide valuable 
insights into breed purity, population structure, and disease 
resistance within the studied populations.

Table 2: Venn diagram of SNPs detected by different methods in different densities of datasets

Panel of SNP Common SNPs through 
Combine method 

Common SNPs 
through Delta method 

Common SNPs through FST 
method 

Common SNPs through 
Info method 

1000(1K) 79 66 19 73

3000(3K) 463 432 153 416

5000(5K) 1034 970 482 935

10,000(10K) 3067 2998 1989 2838

20,000(20K) 9164 9433 7790 8731
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Fig. 1: Venn diagrams showing the common SNPs via info method in 
different datasets

Fig. 2: Venn diagrams showing the common SNPs via FST method in 
different datasets

Fig. 3: Venn diagrams showing the common SNPs via Combine method 
in different datasets

Fig. 4: Venn diagrams showing the common SNPs via Delta method in 
different datasets

co n c lu s I o n

This study utilized Ovine 50K SNP BeadChip data to 
investigate pure SNP densities within Indian, Asian, and 
exotic sheep breeds. The application of quality control 
measures resulted in the identification of high-quality SNP 
markers for downstream analysis. The findings shed light 
on the evolutionary relationships between different sheep 
populations and hold important implications for India’s 
breeding policies concerning small ruminants. Using the 
Combine, Info, FST and Delta method and the Venn diagram, 
display notable and frequent SNPs in distinct panels. These 
frequent SNPs distinguish between Indian, exotic, and Asian 
sheep breeds. Higher the common SNPs, the easier it is to 
discern breeds. Because it selected more common SNPs from 
a 20K panel, it is the best panel.

In summary, this study employed rigorous quality control 
measures to filter and retain high-quality SNP markers in 
different datasets of sheep breeds. The research provided 
critical insights into genetic relationships and diversity within 
these breeds, with implications for breed improvement 
and conservation efforts. Additionally, the identification 
of common and unique SNP markers contributes to our 
understanding of breed purity, population structure, and 
disease resistance. The findings build upon previous research 
and enhance our knowledge of the genetic characteristics of 
these livestock populations.
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