A Review on Microorganisms Important to Bioremediation
Keywords:
Bacterial, Bioremediation, Environment, MicroorganismsAbstract
Industrialization, population explosion, or changing lifestyles have led in the creation of non degradable contaminants harming the environment and human health. Biological methods employing microorganisms are gaining significance as an eco-friendly and cost-effective alternative to reduce the pollution burden. Microorganisms can live in a diverse environment and generate metabolites that may breakdown and convert toxins making it possible to resuscitate polluted areas naturally. Natural microbiomes have also been exploited in a variety of bioremediation approaches. New tools for studying bacterial activity in polluted or bioremediated sites have been developed as a result of recent breakthroughs in molecular bacterial communities. Such investigations provide information that aids in the evaluation of bioremediation effectiveness or the creation of techniques to speed up bioremediation.
Downloads
References
Kazuya Watanabe, “Microorganisms relevant to bioremediation,” Curr. Opin. Biotechnol., 2001.
P. Jain et al., “A comparative evaluation of the effectiveness of three different irrigating solution on microorganisms in the root canal: An invivo study,” J. Clin. Diagnostic Res., 2015, doi: 10.7860/JCDR/2015/13133.6991.
H. Dwivedi, K. Agrawal, and S. A. Saraf, “Evaluation of factors affecting uricase production by the screened wild/natural microbes,” E-Journal Chem., 2012, doi: 10.1155/2012/976242.
R. Nageshbabu, M. N. Jyothi, N. Sharadamma, D. V. Rai, and V. R. Devaraj, “Computational identification of conserved miRNAs and their potential targets in French bean (Phaseolus vulgaris),” Res. J. Pharm. Biol. Chem. Sci., 2012.
M. Maithani, S. Sahu, A. K. Chaudhary, and R. Singh, “Development and validation of a novel RP-HPLC method for simultaneous determination of salbutamol sulfate, guaifenesin, and ambroxol hydrochloride in tablet formulation,” J. Liq. Chromatogr. Relat. Technol., 2012, doi: 10.1080/10826076.2011.615289.
D. P. Maurya et al., “Formulation and optimization of alkaline extracted ispaghula husk microparticles of isoniazid
in-vitro and in-vivo assessment,” J. Microencapsul., 2011, doi: 10.3109/02652048.2011.580861.
S. C. Bansal et al., “Comparison between the QCT and the DEXA scanners in the evaluation of BMD in the lumbar spine,” J. Clin. Diagnostic Res., 2011.
A. Gaurav, V. Gautam, and R. Singh, “Exploring the Structure Activity Relationships of Imidazole Containing Tetrahydrobenzodiazepines as Farnesyltransferase Inhibitors: A QSAR Study,” Lett. Drug Des. Discov., 2011, doi: 10.2174/157018011795906758.
A. Chaudhary, N. Tiwari, V. Jain, and R. Singh, “Microporous bilayer osmotic tablet for colon-specific delivery,” Eur. J. Pharm. Biopharm., 2011, doi: 10.1016/j.ejpb.2011.01.004.
A. Gaurav, V. Gautam, and R. Singh, “An Overview on Synthetic Methodologies and Biological Activities of Pyrazoloquinolines,” Mini-Reviews Med. Chem., 2012, doi: 10.2174/13895575110091194.
D. P. Singh, S. K. Deivedi, S. R. Hashim, and R. G. Singhal, “Synthesis and antimicrobial activity of some new quinoxaline derivatives,” Pharmaceuticals, 2010, doi: 10.3390/ph3082416.
S. K. Samanta, O. V. Singh, and R. K. Jain, “Polycyclic aromatic hydrocarbons: Environmental pollution and bioremediation,” Trends in Biotechnology. 2002, doi: 10.1016/S0167-7799(02)01943-1.
L. Tripathi, P. Kumar, and R. Singh, “A Review on Extraction, Synthesis and Anticancer Activity of Betulinic Acid,” Curr. Bioact. Compd., 2009, doi: 10.2174/157340709788452019.
A. Agrawal, A. Sharma, K. K. Awasthi, and A. Awasthi, “Metal oxides nanocomposite membrane for biofouling mitigation in wastewater treatment,” Mater. Today Chem., 2021, doi: 10.1016/j.mtchem.2021.100532.
A. Goswami, J. Singh, D. Kumar, and Sushila, “An efficient analytical approach for fractional equal width equations describing hydro-magnetic waves in cold plasma,” Phys. A Stat. Mech. its Appl., 2019, doi: 10.1016/j.physa.2019.04.058.
N. K. Agrawal, R. Agarwal, G. A. Kumar, J. Jain, Y. K. Vijay, and K. C. Swami, “Study of bacterial cell colonization on plasma induced bio-adoptable polymer nanocomposites membranes,” 2015, doi: 10.1002/masy.201400186.
R. K. Pareek, K. Singh, and R. Ram, “Sequestration of heavy metals from petroleum refinery effluent by active carbon adsorbents precursor to rice husk and sugarcane bagasse,” Ann. Biol., 2021.
M. Purohit and A. Badguzer, “Image formulas of certain special functions via generalized Katugampola fractional integral operator,” Math. Eng. Sci. Aerosp., 2020.
P. M. Fernández, S. C. Viñarta, A. R. Bernal, E. L. Cruz, and L. I. C. Figueroa, “Bioremediation strategies for chromium removal: Current research, scale-up approach and future perspectives,” Chemosphere. 2018, doi: 10.1016/j.chemosphere.2018.05.166.
W. A. Lancaster et al., “Metallomics of two microorganisms relevant to heavy metal bioremediation reveal fundamental differences in metal assimilation and utilization,” Metallomics, 2014, doi: 10.1039/c4mt00050a.
E. M. Ostrem Loss and J. H. Yu, “Bioremediation and microbial metabolism of benzo(a)pyrene,” Molecular Microbiology. 2018, doi: 10.1111/mmi.14062.
C. E. S. Alvaro, L. A. Arocena, M. Á. Martínez, and N. E. S. Nudelman, “Biodegradación aerobia de fracciones de hidrocarburos provenientes de la actividad petrolera en un suelo de la región Patagonia Norte, Argentina,” Rev. Int. Contam. Ambient., 2017, doi: 10.20937/RICA.2017.33.02.06.
A. Habineza, J. Zhai, T. Mai, D. Mmereki, and T. Ntakirutimana, “Biodegradation of 2, 4, 6-trinitrotoluene
(TNT) in contaminated soil and microbial remediation options for treatment,” Periodica Polytechnica Chemical Engineering. 2017, doi: 10.3311/PPch.9251.
D. E. Holmes et al., “Enrichment of specific protozoan populations during in situ bioremediation of uranium contaminated groundwater,” ISME J., 2013, doi: 10.1038/ismej.2013.20.
H. Behzad, T. Gojobori, and K. Mineta, “Challenges and opportunities of airborne metagenomics,” Genome Biol. Evol., 2015, doi: 10.1093/gbe/evv064.
M. Kästner and A. Miltner, “Application of compost for effective bioremediation of organic contaminants and pollutants in soil,” Applied Microbiology and Biotechnology. 2016, doi: 10.1007/s00253-016-7378-y.