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ABSTRACT- To automatically summarize a piece of 

material, the length of the original text must be reduced 

while the content's important informative parts and 

significance are preserved. As a result, automating manual 

text summarizing, which is a time-consuming and labor-

intensive procedure, is gaining popularity, and is therefore 

a major motivator for academic study. In today's age of 

data overload, abstracting and summarizing huge texts is 

critical. Over time, a variety of approaches for 

summarizing text have been created. Traditional 

approaches construct a summary directly as a result of the 

duplication and omission of the document summary 

connection. Deep learning algorithms have been 

demonstrated to be useful in creating summaries. We 

concentrate on deep learning-based text summarizing 

algorithms that have been developed throughout time. 

KEYWORDS- Summarize text, Deep Learning 

Techniques, Effective, Automatization 

I. INTRODUCTION 

To describe a piece of content autonomously, the original 

text's length must be decreased while the content's main 

informative elements and relevance are kept. As a result, 

automating manual text summarization, which is a time-

consuming and labor-intensive technique, is gaining 

traction and becoming a significant incentive for academic 

study. The volume of text data from various sources has 

exploded in the age of big data. These kind of text volumes 

are a treasure of information that must be expertly 

presented in order to be useful. Humans usually study a 

book in its entirety to obtain a complete understanding of 

it before creating a summary that emphasizes the most 

significant aspects[1]. Because computers lack human 

understanding and language ability, summarizing material 

is difficult. 

Natural language processing techniques may be used to 

summarize a piece of text by using algorithms like page 

rank algorithms. These algorithms are wonderful for text 

summaries, but they can't come up with new terms that 

aren't in the document, and they can't catch grammatical 

errors. Therefore, we may rely on Deep Learning, a text 

summarization model that incorporates new terms. As a  

 

result, we use deep learning algorithms to construct 

grammatically and phraseological correct summaries. 

A. Deep Learning  

Several nonlinear processing units are utilized in a cascade 

while performing transformations and feature extractions, 

such that the output of one layer is provided as an input to 

the next layer. Using a sequence of feature layers, deep 

learning algorithms may learn from inputs in both an 

unsupervised and supervised manner.[2] The features 

layers are not clarified and evolved by humans as a result 

of a generalized learning process but are automatically 

learned from generalized learning. 

In order to construct the summary, text summarizing 

methods entail extracting words directly from the textual 

content. Eliminating stop words and finding noun groups 

are both part of the lemmatization process.[3] Using 

traditional methods, on the other hand, has the major 

disadvantage of producing a summary that is not accurate. 

Given the lack of a record of the keywords chosen before, 

it's possible that certain words will occur in the summary 

as well as in the main text. Furthermore, the created 

summary and the document have a low correlation using 

standard methodologies. As a result, the condensed 

information makes it more difficult for customers to 

comprehend the paper. Deep learning approaches are 

utilized for summarization in this way to overcome 

difficulties.[4] 

B. Need for text summarization 

When it comes to text summary, it's important to extract 

words directly from a text. Stop words are removed from 

noun groups during normalization. To be sure, using 

conventional procedures has drawbacks, such as the 

inability to develop unique content. Because there is no 

record of the keywords that were previously picked, it's 

likely that certain terms will appear in both the summary 

and the main text. Furthermore, the link between the 

summary and the document produced by traditional 

methods is relatively weak.[5] Customers will find it more 

difficult to comprehend a summarized content as a result. 

Therefore, text summarizing is performed automatically., 
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C. Approaches used for automatic text summarization 

There are two basic types of NLP strategies for 

summarizing text. Each has its own set of drawbacks, such 

as the inability to produce new text. Because there is no 

record of the keywords that were previously picked, it's 

likely that certain terms will appear in both the summary 

and the main text.[6] Furthermore, the link between the 

summary and the document produced by traditional 

methods is relatively weak. Customers will find it more 

difficult to comprehend a summarized content as a result. 

Therefore, text summarizing is performed 

automatically.[7]. 

D. Approaches used for automatic text summarization: 

There are two main types of how to summarize text in 

NLP: 

 Extractive Summarization 

 Abstractive Summarization 

 Extractive Text Summarization: Extracting 
Extractive text summarizing (ETS) is the process of 

extracting key phrases from a source material and 

utilizing them in a summary. During the extraction 

procedure, the texts are not changed in any manner. 

Figure 1 depicts this procedure.[7] 

 Abstractive Text Summarization: Sections of the 

quality content are paraphrased and condensed as part 

of the applied external, as seen in Figure 2. When 

employed in deep learning, text summarization 

utilizing abstraction helps overcome the grammatical 

flaws of the extractive technique. They, like people, 

create new phrases and sentences to communicate the 

most useful information from the original material. 

As a result, abstraction outperforms extraction. 

 

Figure 1: Extractive Summarization 

 

Figure 2: Abstractive Summarization 

II. LITERATURE REVIEW 

Automatic summary of legal content is challenging due to 

a variety of writing styles and different features of legal 

themes included in the text. The writers of Legal Text 

Summarization provide a detailed examination of the 

approaches used in legal text summarization [4]. An 

asymmetric weighted graph, in which sentences are 

portrayed as nodes in a graph, to summarize legal 

documents. Only sentences with high node values are 

chosen for retention in the summary table for the overview. 

A document is represented as a collection of phrases that 

belong to almost the same linked constituent as a number 

of related graphs. This strategy encourages variety and, 

therefore, provides a steady flow of information. The 

authors utilize both keyword/key phrase matching and 

case-based approaches, according [3] to capture 

information diversity, discriminant analysis is presented 

for multi-document summarization of Arabic text [8]. 

To cluster court judgments, hierarchical Latent Dirichlet 

Allocation (hLDA) might be employed [4]. The similarity 

measure between topics and documents is used to run 

hLDA and discover the summary of each document using 

the same topics. The significance score may be derived by 

adding the TF-IDF scores for each word in each sentence 

and normalizing by the sentence length, according to [3]. 

The summarizing task is separated into two parts, 

according to [4], segmentation of the document using 

artificial potential field to identify rhetorical roles, and 

development of a summary from the segments so 

discovered.[8] 

For text summarization, a variety of models have been 

suggested, ranging from simple multi-layer networks to 

complex neural network designs [11]. Deep learning 

techniques, on the other hand, have rarely been used to 

create legal document summaries, as far as we know. We 

provide a deep learning-based approach for summarizing 

legal documents using computerized sentence labelling.[9] 

III. OBJECTIVES 

The main purpose of this project is to: 

• Use transfer learning to extract the most important 

meaning from text and provide it to the user. 

• Use data mining algorithms that can be designed to 

read documents and find crucial information. 

IV. METHODOLOGY 

A. Natural Language Processing 

Natural language processing (NLP) is an expert system 

(AI) area that helps computers comprehend and analyze 

natural language. Natural language processing (NLP) may 

be used to organize and rearrange content in order to 

complete tasks like localization and summaries, according 

to researchers.[10] 

1. Components of NLP Five main Component of 

Natural Language processing are: 

 Morphological and Lexical Analysis 

 Syntactic Analysis 

 Semantic Analysis 

 Discourse Integration 

 Pragmatic Analysis 
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Morphological and Lexical Analysis: If you want to learn 

more about lexical analysis, you'll discover how to identify 

the structure of words by studying, recognizing, and 

analyzing them. and it entails breaking down a document 

into paragraphs, words, and phrases.[11] 

Each word is broken down into its component pieces. 

Analytical Semantics: Semantic Analysis is the process of 

a syntactic analyzer assigning interpretations to a sentence. 

This component, as its name says, turns a sequence of Its 

purpose is to show how the words connect to one another. 

Syntax analysis: Words are usually considered as the 

smallest units of syntax. If you want to learn more about 

syntax, it is the set of principles and rules that govern how 

sentences are constructed in every language.[12] 

Pragmatic Analysis: Prag focuses on the analysis of variety 

of communication content, as well as its effect on 

interpretation. The process of deriving or abstracting the 

meaningful usage of language is referred to as this. As a 

consequence of this study, the focus is always on what was 

said and how it was communicated. 

"Close the window?" for example, should be viewed as a 

request rather than a command. 

B. Discourse Integration 

If you want to know what a single phrase means, you can 

look it up on the internet. It also considers the significance 

of the following sentence. 

In the phrase "He wished that," for example, "that" is a 

function of what has occurred before in the sentence. 

V. SIMULATION METHODOLOGY 

A. Extractive Approach  

Extractive methods identify the most important words 

from a list of keywords to summarize publications. 

The most important portions of sentences are weighted in 

summary sentences. Sentences are rated using a number of 

algorithms and methodologies based on their relevance 

and similarity. Because this approach cannot produce text 

on its own, the outcome will always include a piece of the 

original text. There are several approaches for extractive 

summarization. Essentially said, we'll utilise unsupervised 

learning to find, and rank connected phrases. We won't 

have to train and build a model before we can utilise it for 

our project this way. 

1. Unsupervised approach: The robots are taught to use 

data that hasn't been classified or labelled without 

supervision. In essence, this means that no training data 

may be provided, and the computer is forced to learn 

on its own. The computer should not require any prior 

knowledge of the data to classify it. The machine must 

be programmed for it to learn on its own. The computer 

must be able to comprehend and evaluate both 

structured and unstructured data. Here's a real-life 

example of unsupervised classification:[13] 

Python's libraries include a lot of support for natural 

language processing. To summarize the subject, the NLTK 

(natural language toolkit) will be utilized. 

Step 1: Importing the necessary libraries 

Creating effective feedback exhibited great will need the 

use of two NLTK libraries. 

imported stop words from nltk.corpus 

import word tokenize, sent tokenize from nltk 

The terms used in this article include 

:Corpus: Corpus is a term that refers to a collection of 

things. Texts, such as poetry by a single poet or an author's 

whole body of work, may be utilized as data sets. In this 

circumstance, a set of pre-determined stop words will be 

utilized.[14] 

 Tokenizers: It deconstructs a text into tokens. Word, 

phrase, and regex tokenizers are examples of 

tokenizers, with the former being the most 

common.[15] As a result, we'll only employ the word 

and term tokenizers. 

Step 2: Stop Words are removed and stored in a separate 

array of words. 

Stop Words: There are various words in a statement that 

aren't essential, such as (is, a, an, the, for). Consider the 

following sentence as an illustration. 

Jammu and Kashmir, sometimes known as the Crown of 

India, is India's northernmost state. 

Following the removal of stop words, we may reduce the 

number of words while maintaining the meaning as 

follows: 

:'Jammu','and','Kashmir','northern','most','state','India','als

o','called','crown','India' 

Step 3: Create a word frequency table. 

Figure 3 shows how a python dictionary keeps track of 

how many times each word appears after stop words are 

deleted.[16] We can run each sentence through the 

dictionary to see which sentences contain the most 

important information in the overall text. 

Step 4: Assign score to each phrase subject to the terms it 

includes and the frequency table 

To produce the array of phrases displayed in Figure 4, we 

may use the sent tokenize () function. Second, we'll need a 

lexicon to keep track of the sentences' scores. 
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Figure 3: Creating a Frequency Table 

 

Figure 4: Assign scores to sentences 

Step 5: To compare the sentences in the feedback, provide 

a score. 

Finding the average score of a phrase, as shown in Figure 

5, is a straightforward way to compare our scores. The 

average can be a useful criterion in and of itself. 

As illustrated in Figure 6, apply the threshold value and 

store phrases in order in the summary.[18] 

.

 
Figure 5: Assign Scores to compare the sentences 
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Figure 6: Storing the sentences 

B. Abstractive Summarization 

We produce new terms from the original information. This 

contrasts with the extractive strategy, in which we only 

used the sentences that were already in the database. 

Certain sentences may be missing from the original text 

because of the abstractive summarizing procedure. 

Before we go into the implementation, let's go through the 

principles that are required to develop a Text Summarizer 

model. 

1. Recurrent Neural Network: The term "recurrent 

neural networks" refers to a type of neural network. 

RNNs that are very good at modelling genetic 

sequences, such as time series. This layout is based on 

the sequential information concept. Many the most 

frequently occurring words are sent into the RNN 

network. The computer searches the data for words 

that appear often in order to predict the following 

word in a sentence. As a result, do you realize how 

critical the RNN is in our daily lives? Among reality, 

it has bred laziness in us [17]. Figures 7 and 8 

demonstrate the RNN's fundamental structure as well 

as a visual depicting the RNN's basic equations. 

 

Figure 6: Basic Architecture of RNN 

 

Figure 7: Basic Equations of RNN 

2. Types of RNN architectures: — RNN architectures at 

a basic level 

One-on-one:- When dealing with simple machine learning 

difficulties, this method is often known as a vanilla neural 

network. It features a single input and many outputs. 

Application: used in picture captioning, such as the dog 

catching the ball in the air we saw before. 

— From many to one: It has a lot of inputs and just one 

output. This is mostly utilized in sentiment analysis, where 

we provide a statement as an input and receive sentiment 

about it as an output. 

— Many to Many—It accepts a set of inputs and produces 

a set of outputs. Machine Translation (Application) 

Issues while training a RNN: — 

 Vanishing Gradient Problem 

 Exploding Gradient Problem 

Gradients return to the initial layer as a deep neural 

network is trained. The gradients must flow via a 

continuous matrix multiplication because of the chain rule. 

If their values are little, they will quickly dwindle to the 

point where they will vanish (1). The vanishing gradient 

problem is the name for this phenomenon. As a result, over 

time, data got lost. When inclinations have large values 

(>1), this is known as the growing gradient issue. 

 Issues due to these problems: 

 Long training time 

 Poor Performance 

 Bad Accuracy 
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C. Introduction to Sequence-to-Sequence (Seq2Seq) 

Modeling 

We may use the Seq2Seq paradigm to analyse and solve 

any problem involving sequential data. Sentiment 

classification, Neural Phonetic Transcription, and Named 

Entity Recognizing are some of the most common 

applications of sequential data. 

Machine Translation takes a text in one language and 

produces a text in that other. 

 
A set of words is sent into Named Entity Recognition, 

which produces a list of tags for each of the words in the 

succession. 

 
Our objective is to develop a text summarizer that takes a 

big list of words (from a text body) as input and produces 

a concise summary of the content (which is a sequence as 

well). We may represent the problem as a Seq2Seq issue 

with many-to-many components. Consider the following 

Seq2Seq model design as an example: 

A Seq2Seq model is made up of two major parts.: 

 Encoder 

 Decoder. 

Understanding the Architecture of Encoders and Decoders 

Encoder-decoder architecture is used to solve the Seq2Seq 

problem. 

Let's take a look at it from a textual aspect to better 

understand it. You offer a large string of words as an input, 

and you provide a condensed version of the original signal 

as an output.[3] 

The encoder-decoder can be set up in two stages: 

 Training phase 

 Inference phase 

1. Training phase: We'll move on to the training phase 

about the after building up the coder and receiver. In 

this step, we'll train our data to simulate the 

complementary strand with a the setup of the encoder 

and decoder will be described in depth.[11] 

Encoder An Encoder Long Short-Term Memory Model 

feeds one word into the encoder at each timestep (LSTM). 

Each timestep is analyzed, and the input sequence's 

environmental data is recorded. Figure 9 demonstrates this. 

The hidden state (hi) and cell state (ci) of the previous time 

step are used to initialize the decoder. This is because the 

encoder and decoder are two independent components of 

the LSM design. 

Decoder The decoder, like the encoder, is an LSTM 

network that reads the whole object of the class work and 

expects so same sequence, but the code is trained to 

forecast the next word using the prior word as a cue. Figure 

10 depicts the basic construction of a decoder. 

 

Figure 8: Basic Structure of Encoder 

 

Figure 9: Basic structure of Decoder 

Special tokens called <start> and <finish> must be 

attached to the target DNA in order to decode it. The 

promoter region is unknown during decoding the test 

sequence. The decoder is given the first word, which is 

always <start>, to predict the target sequence. It's also 

worth remembering that end> denotes the statement's end. 

2. Inference Phase: After training, the model is put to 

the test on new source sequencing with unknown 

target sequences. To decode an iteration process, we 

must first build up the inference architecture.: 

D. Working of Inference 

The steps to decoding the measurements in order are as 

follows: 

• Encrypt the whole input stream first, then utilize the 

encoded data to initialize the decoder. 

• The <start> token should be passed to Decoding as an 

input. 

• Then, for a single timestep, execute the decoder. 

• The probability of the next word being returned. The 

phrase that is most likely to be picked will be 

chosen.[9] 

• In the next timestep, provide the sampled word to the 

decoder and adjust the internal states with the current 

linear interpolation. 6. 

• Tokenize the target sequence by repeating the test 3–5 

until an end> token is formed, or the target sequence is 

reached. 

As an example, consider the test sequence [x1, x2, x3, x4]. 

How will the inference method work for this test 

sequence? 

• Create internal state arrays from the test sequence. 

• At each keyframe, see how the parser forecasts the 

target sequence: 
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Figure: 10 Timestep t=1 

 

Figure: 11 Timestep t=2 

 

Figure:12 timestep t=3 

VI. RESULTS 

We've finally arrived to the stage when, in order to create 

the model, we'll need to become acquainted with a few 

terminology. 

• Return Sequences = True: When this option is selected, 

LSTM creates hidden and cell states for each timestep. 

• Return State = True: When return state = True, LSTM 

creates just the prior timestep's covert data and cell 

state, as the name implies. 

• Initial State: Sets the LSTM's emotions and opinions 

for the first timestep. 

• Layered LSTM: This sort of LSTM consists of many 

layers stacked on top of each other. As a result, the 

sequence is more accurately shown. It's an excellent 

technique to learn to stack a bunch of LSTMs on top of 

each other. 

• Figure 14 shows how a three-stacked LSTM generator 

is built, and Figure 15 shows the encoder's output.: 

 

Figure 13: Three stack LSTM for encoder 
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Figure 14: Output for 2 stack LSM for encoder 

Sparse categorizing cross-entropy is the loss function, 

which turns an integer string into a one-hot vector on the 

fly. This takes care of any memory issues. 

 model. Compile (optimizer='rmsprop', 

loss='sparse_categorical_crossentropy') 

Based on a user-specified measure, it decides when to 

cease training the neural network. The validity loss is 

something we're keeping an eye on (if it becomes too high, 

our model will cease training).: 

 es = Early Stopping (monitor='val_loss', mode='min', 

verbose=1) 

We'll test the model on the holdout set after training it with 

512 batches (which makes up 10 percent of our dataset): 

 y tr.reshape(y tr.shape[0],y tr.shape[1], 1)[:,1:] 

history=model.fit([x tr,y tr[:,:-1]], y tr.reshape(y 

tr.shape[0],y tr.shape[1], 1)[:,1:] 

,epochs=50,callbacks=[es],batch size=512, 

validation data=,epochs=50,callbacks=[es],batch 

size=512, validation data= y val.reshape(y 

val.shape[0],y val.shape[1], 1)[:,1:] ([x val,y val[:,:-

1]), y val.reshape(y val.shape[0],y val.shape[1], 

1)[:,1:])) 

A. Understanding the Diagnostic plot 

Now we'll make a few diagnostic graphs to see how the 

model behaves over time.: 

 

 from matplotlib import pyplot 

 pyplot.plot(history.history['loss'], label='train')  

 pyplot.plot(history.history['val_loss'], label='test')  

 pyplot.legend() pyplot.show() 

 

Output: 

 

Figure 15: Output of Cross Entropy  

We may conclude that the prediction error has grown 

somewhat after epoch 10. As a result, after this epoch, we 

will no longer train the model. 

Let's now create a dictionary to translate the index to words 

for both the target and source vocabulary: 

 reverse_target_word_index=y_tokenizer.index_word 

 reverse_source_word_index=x_tokenizer.index_word 

 target_word_index=y_tokenizer.word_index 

  

B. Inference 

The various steps involved are  

Step 1: Set up the inference for the encoder and decoder 

as shown in Figure 17 

https://cdn.analyticsvidhya.com/wp-content/uploads/2019/05/o14.jpg
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Figure 16: Inference setup for Encoder and Decoder 

Step 2 Figure 18 illustrates how this function conducts the 

inference technique. 

 

Figure 17: The interference procedure implementation 
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Step 3 As illustrated in Figure 19, we now construct the 

routines to transform a numeric sequence to a word 

sequence for the summary and reviews. 

 

Figure 18: Defining functions and converting into a word sequence  

Step 4 A few summaries generated by the model are 

shown in Figure 20.: 

 

Figure 19: Examples of the Output Summaries  
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VII. CONCLUSION 

Despite the fact that our model's summary and the real one 

are not the same length, they both communicate the same 

idea. My model can provide a comprehensible summary of 

the information using context from the text. 

This is how deep learning methods in Python may be used 

to summarize text. 

• Build the model by expanding the training dataset. As 

the amount of the training dataset expands, a deep 

learning model's ability to generalize improves. 

• Use a Bi-Directional LSTM to capture information 

from both directions and generate a better context 

vector. 

• Use the beam search strategy to decode the test 

sequence instead of the greedy method (argmax) 

• assess your effectiveness of the algorithm using the 

BLEU score. 

• Set up pointer-generating networks and techniques of 

inclusion. 
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