
 International Journal of Innovative Research in Engineering & Management (IJIREM)

 ISSN: 2350-0557, Volume-9, Issue-2, April 2022

https://doi.org/10.55524/ijirem.2022.9.2.3

Article ID IJIR-1183, Pages 18-28

 www.ijirem.org

Innovative Research Publication 18

A Study of Implementation of Deep Learning Techniques for

Text Summarization

Bilkeesa Akhter1, and Dr. Monika Mehra2

1 M.Tech Scholar, Department of Electronics and Communication Engineering, RIMT University Mandi Gobingrah, Punjab

India
2 Professor, Department of Electronics and Communication Engineering, RIMT University Mandi Gobingrah Punjab India

 Correspondence should be addressed to Bilkeesa Akhter; sneharajput9393@gmail.com

Copyright © 2022 Bilkeesa Akhter et al. This is an open-access article distributed under the Creative Commons Attribution License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT- To automatically summarize a piece of

material, the length of the original text must be reduced

while the content's important informative parts and

significance are preserved. As a result, automating manual

text summarizing, which is a time-consuming and labor-

intensive procedure, is gaining popularity, and is therefore

a major motivator for academic study. In today's age of

data overload, abstracting and summarizing huge texts is

critical. Over time, a variety of approaches for

summarizing text have been created. Traditional

approaches construct a summary directly as a result of the

duplication and omission of the document summary

connection. Deep learning algorithms have been

demonstrated to be useful in creating summaries. We

concentrate on deep learning-based text summarizing

algorithms that have been developed throughout time.

KEYWORDS- Summarize text, Deep Learning

Techniques, Effective, Automatization

I. INTRODUCTION

To describe a piece of content autonomously, the original

text's length must be decreased while the content's main

informative elements and relevance are kept. As a result,

automating manual text summarization, which is a time-

consuming and labor-intensive technique, is gaining

traction and becoming a significant incentive for academic

study. The volume of text data from various sources has

exploded in the age of big data. These kind of text volumes

are a treasure of information that must be expertly

presented in order to be useful. Humans usually study a

book in its entirety to obtain a complete understanding of

it before creating a summary that emphasizes the most

significant aspects[1]. Because computers lack human

understanding and language ability, summarizing material

is difficult.

Natural language processing techniques may be used to

summarize a piece of text by using algorithms like page

rank algorithms. These algorithms are wonderful for text

summaries, but they can't come up with new terms that

aren't in the document, and they can't catch grammatical

errors. Therefore, we may rely on Deep Learning, a text

summarization model that incorporates new terms. As a

result, we use deep learning algorithms to construct

grammatically and phraseological correct summaries.

A. Deep Learning

Several nonlinear processing units are utilized in a cascade

while performing transformations and feature extractions,

such that the output of one layer is provided as an input to

the next layer. Using a sequence of feature layers, deep

learning algorithms may learn from inputs in both an

unsupervised and supervised manner.[2] The features

layers are not clarified and evolved by humans as a result

of a generalized learning process but are automatically

learned from generalized learning.

In order to construct the summary, text summarizing

methods entail extracting words directly from the textual

content. Eliminating stop words and finding noun groups

are both part of the lemmatization process.[3] Using

traditional methods, on the other hand, has the major

disadvantage of producing a summary that is not accurate.

Given the lack of a record of the keywords chosen before,

it's possible that certain words will occur in the summary

as well as in the main text. Furthermore, the created

summary and the document have a low correlation using

standard methodologies. As a result, the condensed

information makes it more difficult for customers to

comprehend the paper. Deep learning approaches are

utilized for summarization in this way to overcome

difficulties.[4]

B. Need for text summarization

When it comes to text summary, it's important to extract

words directly from a text. Stop words are removed from

noun groups during normalization. To be sure, using

conventional procedures has drawbacks, such as the

inability to develop unique content. Because there is no

record of the keywords that were previously picked, it's

likely that certain terms will appear in both the summary

and the main text. Furthermore, the link between the

summary and the document produced by traditional

methods is relatively weak.[5] Customers will find it more

difficult to comprehend a summarized content as a result.

Therefore, text summarizing is performed automatically.,

International Journal of Innovative Research in Engineering & Management (IJIREM)

Innovative Research Publication 19

C. Approaches used for automatic text summarization

There are two basic types of NLP strategies for

summarizing text. Each has its own set of drawbacks, such

as the inability to produce new text. Because there is no

record of the keywords that were previously picked, it's

likely that certain terms will appear in both the summary

and the main text.[6] Furthermore, the link between the

summary and the document produced by traditional

methods is relatively weak. Customers will find it more

difficult to comprehend a summarized content as a result.

Therefore, text summarizing is performed

automatically.[7].

D. Approaches used for automatic text summarization:

There are two main types of how to summarize text in

NLP:

 Extractive Summarization

 Abstractive Summarization

 Extractive Text Summarization: Extracting
Extractive text summarizing (ETS) is the process of

extracting key phrases from a source material and

utilizing them in a summary. During the extraction

procedure, the texts are not changed in any manner.

Figure 1 depicts this procedure.[7]

 Abstractive Text Summarization: Sections of the

quality content are paraphrased and condensed as part

of the applied external, as seen in Figure 2. When

employed in deep learning, text summarization

utilizing abstraction helps overcome the grammatical

flaws of the extractive technique. They, like people,

create new phrases and sentences to communicate the

most useful information from the original material.

As a result, abstraction outperforms extraction.

Figure 1: Extractive Summarization

Figure 2: Abstractive Summarization

II. LITERATURE REVIEW

Automatic summary of legal content is challenging due to

a variety of writing styles and different features of legal

themes included in the text. The writers of Legal Text

Summarization provide a detailed examination of the

approaches used in legal text summarization [4]. An

asymmetric weighted graph, in which sentences are

portrayed as nodes in a graph, to summarize legal

documents. Only sentences with high node values are

chosen for retention in the summary table for the overview.

A document is represented as a collection of phrases that

belong to almost the same linked constituent as a number

of related graphs. This strategy encourages variety and,

therefore, provides a steady flow of information. The

authors utilize both keyword/key phrase matching and

case-based approaches, according [3] to capture

information diversity, discriminant analysis is presented

for multi-document summarization of Arabic text [8].

To cluster court judgments, hierarchical Latent Dirichlet

Allocation (hLDA) might be employed [4]. The similarity

measure between topics and documents is used to run

hLDA and discover the summary of each document using

the same topics. The significance score may be derived by

adding the TF-IDF scores for each word in each sentence

and normalizing by the sentence length, according to [3].

The summarizing task is separated into two parts,

according to [4], segmentation of the document using

artificial potential field to identify rhetorical roles, and

development of a summary from the segments so

discovered.[8]

For text summarization, a variety of models have been

suggested, ranging from simple multi-layer networks to

complex neural network designs [11]. Deep learning

techniques, on the other hand, have rarely been used to

create legal document summaries, as far as we know. We

provide a deep learning-based approach for summarizing

legal documents using computerized sentence labelling.[9]

III. OBJECTIVES

The main purpose of this project is to:

• Use transfer learning to extract the most important

meaning from text and provide it to the user.

• Use data mining algorithms that can be designed to

read documents and find crucial information.

IV. METHODOLOGY

A. Natural Language Processing

Natural language processing (NLP) is an expert system

(AI) area that helps computers comprehend and analyze

natural language. Natural language processing (NLP) may

be used to organize and rearrange content in order to

complete tasks like localization and summaries, according

to researchers.[10]

1. Components of NLP Five main Component of

Natural Language processing are:

 Morphological and Lexical Analysis

 Syntactic Analysis

 Semantic Analysis

 Discourse Integration

 Pragmatic Analysis

International Journal of Innovative Research in Engineering & Management (IJIREM)

Innovative Research Publication 20

Morphological and Lexical Analysis: If you want to learn

more about lexical analysis, you'll discover how to identify

the structure of words by studying, recognizing, and

analyzing them. and it entails breaking down a document

into paragraphs, words, and phrases.[11]

Each word is broken down into its component pieces.

Analytical Semantics: Semantic Analysis is the process of

a syntactic analyzer assigning interpretations to a sentence.

This component, as its name says, turns a sequence of Its

purpose is to show how the words connect to one another.

Syntax analysis: Words are usually considered as the

smallest units of syntax. If you want to learn more about

syntax, it is the set of principles and rules that govern how

sentences are constructed in every language.[12]

Pragmatic Analysis: Prag focuses on the analysis of variety

of communication content, as well as its effect on

interpretation. The process of deriving or abstracting the

meaningful usage of language is referred to as this. As a

consequence of this study, the focus is always on what was

said and how it was communicated.

"Close the window?" for example, should be viewed as a

request rather than a command.

B. Discourse Integration

If you want to know what a single phrase means, you can

look it up on the internet. It also considers the significance

of the following sentence.

In the phrase "He wished that," for example, "that" is a

function of what has occurred before in the sentence.

V. SIMULATION METHODOLOGY

A. Extractive Approach

Extractive methods identify the most important words

from a list of keywords to summarize publications.

The most important portions of sentences are weighted in

summary sentences. Sentences are rated using a number of

algorithms and methodologies based on their relevance

and similarity. Because this approach cannot produce text

on its own, the outcome will always include a piece of the

original text. There are several approaches for extractive

summarization. Essentially said, we'll utilise unsupervised

learning to find, and rank connected phrases. We won't

have to train and build a model before we can utilise it for

our project this way.

1. Unsupervised approach: The robots are taught to use

data that hasn't been classified or labelled without

supervision. In essence, this means that no training data

may be provided, and the computer is forced to learn

on its own. The computer should not require any prior

knowledge of the data to classify it. The machine must

be programmed for it to learn on its own. The computer

must be able to comprehend and evaluate both

structured and unstructured data. Here's a real-life

example of unsupervised classification:[13]

Python's libraries include a lot of support for natural

language processing. To summarize the subject, the NLTK

(natural language toolkit) will be utilized.

Step 1: Importing the necessary libraries

Creating effective feedback exhibited great will need the

use of two NLTK libraries.

imported stop words from nltk.corpus

import word tokenize, sent tokenize from nltk

The terms used in this article include

:Corpus: Corpus is a term that refers to a collection of

things. Texts, such as poetry by a single poet or an author's

whole body of work, may be utilized as data sets. In this

circumstance, a set of pre-determined stop words will be

utilized.[14]

 Tokenizers: It deconstructs a text into tokens. Word,

phrase, and regex tokenizers are examples of

tokenizers, with the former being the most

common.[15] As a result, we'll only employ the word

and term tokenizers.

Step 2: Stop Words are removed and stored in a separate

array of words.

Stop Words: There are various words in a statement that

aren't essential, such as (is, a, an, the, for). Consider the

following sentence as an illustration.

Jammu and Kashmir, sometimes known as the Crown of

India, is India's northernmost state.

Following the removal of stop words, we may reduce the

number of words while maintaining the meaning as

follows:

:'Jammu','and','Kashmir','northern','most','state','India','als

o','called','crown','India'

Step 3: Create a word frequency table.

Figure 3 shows how a python dictionary keeps track of

how many times each word appears after stop words are

deleted.[16] We can run each sentence through the

dictionary to see which sentences contain the most

important information in the overall text.

Step 4: Assign score to each phrase subject to the terms it

includes and the frequency table

To produce the array of phrases displayed in Figure 4, we

may use the sent tokenize () function. Second, we'll need a

lexicon to keep track of the sentences' scores.

International Journal of Innovative Research in Engineering & Management (IJIREM)

Innovative Research Publication 21

Figure 3: Creating a Frequency Table

Figure 4: Assign scores to sentences

Step 5: To compare the sentences in the feedback, provide

a score.

Finding the average score of a phrase, as shown in Figure

5, is a straightforward way to compare our scores. The

average can be a useful criterion in and of itself.

As illustrated in Figure 6, apply the threshold value and

store phrases in order in the summary.[18]

.

Figure 5: Assign Scores to compare the sentences

.

International Journal of Innovative Research in Engineering & Management (IJIREM)

Innovative Research Publication 22

Figure 6: Storing the sentences

B. Abstractive Summarization

We produce new terms from the original information. This

contrasts with the extractive strategy, in which we only

used the sentences that were already in the database.

Certain sentences may be missing from the original text

because of the abstractive summarizing procedure.

Before we go into the implementation, let's go through the

principles that are required to develop a Text Summarizer

model.

1. Recurrent Neural Network: The term "recurrent

neural networks" refers to a type of neural network.

RNNs that are very good at modelling genetic

sequences, such as time series. This layout is based on

the sequential information concept. Many the most

frequently occurring words are sent into the RNN

network. The computer searches the data for words

that appear often in order to predict the following

word in a sentence. As a result, do you realize how

critical the RNN is in our daily lives? Among reality,

it has bred laziness in us [17]. Figures 7 and 8

demonstrate the RNN's fundamental structure as well

as a visual depicting the RNN's basic equations.

Figure 6: Basic Architecture of RNN

Figure 7: Basic Equations of RNN

2. Types of RNN architectures: — RNN architectures at

a basic level

One-on-one:- When dealing with simple machine learning

difficulties, this method is often known as a vanilla neural

network. It features a single input and many outputs.

Application: used in picture captioning, such as the dog

catching the ball in the air we saw before.

— From many to one: It has a lot of inputs and just one

output. This is mostly utilized in sentiment analysis, where

we provide a statement as an input and receive sentiment

about it as an output.

— Many to Many—It accepts a set of inputs and produces

a set of outputs. Machine Translation (Application)

Issues while training a RNN: —

 Vanishing Gradient Problem

 Exploding Gradient Problem

Gradients return to the initial layer as a deep neural

network is trained. The gradients must flow via a

continuous matrix multiplication because of the chain rule.

If their values are little, they will quickly dwindle to the

point where they will vanish (1). The vanishing gradient

problem is the name for this phenomenon. As a result, over

time, data got lost. When inclinations have large values

(>1), this is known as the growing gradient issue.

 Issues due to these problems:

 Long training time

 Poor Performance

 Bad Accuracy

International Journal of Innovative Research in Engineering & Management (IJIREM)

Innovative Research Publication 23

C. Introduction to Sequence-to-Sequence (Seq2Seq)

Modeling

We may use the Seq2Seq paradigm to analyse and solve

any problem involving sequential data. Sentiment

classification, Neural Phonetic Transcription, and Named

Entity Recognizing are some of the most common

applications of sequential data.

Machine Translation takes a text in one language and

produces a text in that other.

A set of words is sent into Named Entity Recognition,

which produces a list of tags for each of the words in the

succession.

Our objective is to develop a text summarizer that takes a

big list of words (from a text body) as input and produces

a concise summary of the content (which is a sequence as

well). We may represent the problem as a Seq2Seq issue

with many-to-many components. Consider the following

Seq2Seq model design as an example:

A Seq2Seq model is made up of two major parts.:

 Encoder

 Decoder.

Understanding the Architecture of Encoders and Decoders

Encoder-decoder architecture is used to solve the Seq2Seq

problem.

Let's take a look at it from a textual aspect to better

understand it. You offer a large string of words as an input,

and you provide a condensed version of the original signal

as an output.[3]

The encoder-decoder can be set up in two stages:

 Training phase

 Inference phase

1. Training phase: We'll move on to the training phase

about the after building up the coder and receiver. In

this step, we'll train our data to simulate the

complementary strand with a the setup of the encoder

and decoder will be described in depth.[11]

Encoder An Encoder Long Short-Term Memory Model

feeds one word into the encoder at each timestep (LSTM).

Each timestep is analyzed, and the input sequence's

environmental data is recorded. Figure 9 demonstrates this.

The hidden state (hi) and cell state (ci) of the previous time

step are used to initialize the decoder. This is because the

encoder and decoder are two independent components of

the LSM design.

Decoder The decoder, like the encoder, is an LSTM

network that reads the whole object of the class work and

expects so same sequence, but the code is trained to

forecast the next word using the prior word as a cue. Figure

10 depicts the basic construction of a decoder.

Figure 8: Basic Structure of Encoder

Figure 9: Basic structure of Decoder

Special tokens called <start> and <finish> must be

attached to the target DNA in order to decode it. The

promoter region is unknown during decoding the test

sequence. The decoder is given the first word, which is

always <start>, to predict the target sequence. It's also

worth remembering that end> denotes the statement's end.

2. Inference Phase: After training, the model is put to

the test on new source sequencing with unknown

target sequences. To decode an iteration process, we

must first build up the inference architecture.:

D. Working of Inference

The steps to decoding the measurements in order are as

follows:

• Encrypt the whole input stream first, then utilize the

encoded data to initialize the decoder.

• The <start> token should be passed to Decoding as an

input.

• Then, for a single timestep, execute the decoder.

• The probability of the next word being returned. The

phrase that is most likely to be picked will be

chosen.[9]

• In the next timestep, provide the sampled word to the

decoder and adjust the internal states with the current

linear interpolation. 6.

• Tokenize the target sequence by repeating the test 3–5

until an end> token is formed, or the target sequence is

reached.

As an example, consider the test sequence [x1, x2, x3, x4].

How will the inference method work for this test

sequence?

• Create internal state arrays from the test sequence.

• At each keyframe, see how the parser forecasts the

target sequence:

International Journal of Innovative Research in Engineering & Management (IJIREM)

Innovative Research Publication 24

Figure: 10 Timestep t=1

Figure: 11 Timestep t=2

Figure:12 timestep t=3

VI. RESULTS

We've finally arrived to the stage when, in order to create

the model, we'll need to become acquainted with a few

terminology.

• Return Sequences = True: When this option is selected,

LSTM creates hidden and cell states for each timestep.

• Return State = True: When return state = True, LSTM

creates just the prior timestep's covert data and cell

state, as the name implies.

• Initial State: Sets the LSTM's emotions and opinions

for the first timestep.

• Layered LSTM: This sort of LSTM consists of many

layers stacked on top of each other. As a result, the

sequence is more accurately shown. It's an excellent

technique to learn to stack a bunch of LSTMs on top of

each other.

• Figure 14 shows how a three-stacked LSTM generator

is built, and Figure 15 shows the encoder's output.:

Figure 13: Three stack LSTM for encoder

International Journal of Innovative Research in Engineering & Management (IJIREM)

Innovative Research Publication 25

Figure 14: Output for 2 stack LSM for encoder

Sparse categorizing cross-entropy is the loss function,

which turns an integer string into a one-hot vector on the

fly. This takes care of any memory issues.

 model. Compile (optimizer='rmsprop',

loss='sparse_categorical_crossentropy')

Based on a user-specified measure, it decides when to

cease training the neural network. The validity loss is

something we're keeping an eye on (if it becomes too high,

our model will cease training).:

 es = Early Stopping (monitor='val_loss', mode='min',

verbose=1)

We'll test the model on the holdout set after training it with

512 batches (which makes up 10 percent of our dataset):

 y tr.reshape(y tr.shape[0],y tr.shape[1], 1)[:,1:]

history=model.fit([x tr,y tr[:,:-1]], y tr.reshape(y

tr.shape[0],y tr.shape[1], 1)[:,1:]

,epochs=50,callbacks=[es],batch size=512,

validation data=,epochs=50,callbacks=[es],batch

size=512, validation data= y val.reshape(y

val.shape[0],y val.shape[1], 1)[:,1:] ([x val,y val[:,:-

1]), y val.reshape(y val.shape[0],y val.shape[1],

1)[:,1:]))

A. Understanding the Diagnostic plot

Now we'll make a few diagnostic graphs to see how the

model behaves over time.:

 from matplotlib import pyplot

 pyplot.plot(history.history['loss'], label='train')

 pyplot.plot(history.history['val_loss'], label='test')

 pyplot.legend() pyplot.show()

Output:

Figure 15: Output of Cross Entropy

We may conclude that the prediction error has grown

somewhat after epoch 10. As a result, after this epoch, we

will no longer train the model.

Let's now create a dictionary to translate the index to words

for both the target and source vocabulary:

 reverse_target_word_index=y_tokenizer.index_word

 reverse_source_word_index=x_tokenizer.index_word

 target_word_index=y_tokenizer.word_index

B. Inference

The various steps involved are

Step 1: Set up the inference for the encoder and decoder

as shown in Figure 17

https://cdn.analyticsvidhya.com/wp-content/uploads/2019/05/o14.jpg

International Journal of Innovative Research in Engineering & Management (IJIREM)

Innovative Research Publication 26

Figure 16: Inference setup for Encoder and Decoder

Step 2 Figure 18 illustrates how this function conducts the

inference technique.

Figure 17: The interference procedure implementation

International Journal of Innovative Research in Engineering & Management (IJIREM)

Innovative Research Publication 27

Step 3 As illustrated in Figure 19, we now construct the

routines to transform a numeric sequence to a word

sequence for the summary and reviews.

Figure 18: Defining functions and converting into a word sequence

Step 4 A few summaries generated by the model are

shown in Figure 20.:

Figure 19: Examples of the Output Summaries

International Journal of Innovative Research in Engineering & Management (IJIREM)

Innovative Research Publication 28

VII. CONCLUSION

Despite the fact that our model's summary and the real one

are not the same length, they both communicate the same

idea. My model can provide a comprehensible summary of

the information using context from the text.

This is how deep learning methods in Python may be used

to summarize text.

• Build the model by expanding the training dataset. As

the amount of the training dataset expands, a deep

learning model's ability to generalize improves.

• Use a Bi-Directional LSTM to capture information

from both directions and generate a better context

vector.

• Use the beam search strategy to decode the test

sequence instead of the greedy method (argmax)

• assess your effectiveness of the algorithm using the

BLEU score.

• Set up pointer-generating networks and techniques of

inclusion.

REFERENCES

[1] Amjad Abu-Jbara and Dragomir Radev.. “Coherent

citation-based summarization of scientific papers”. -

Volume 1. Association for Computational Linguistics,

500–509. 2011

[2] Rasim M Alguliev, Ramiz M Aliguliyev, Makrufa S

Hajirahimova, and ChingizAMehdiyev. 2011. MCMR:

“Maximum coverage and minimum redundant text

summarization model.” Expert Systems with Applications

38, 12 (2011), 14514–14522.

[3] Rasim M Alguliev, Ramiz M Aliguliyev, and Nijat R

Isazade.. “Multiple documents summarization based on

evolutionary optimization algorithm.” 2013

[4] Mehdi Allahyari and KrysKochut.. “Automatic topic

labeling using ontology-based topic models. In Machine

Learning and Applications (ICMLA)”, 2015 IEEE 14th

International Conference on. IEEE, 259–264.

[5] Mehdi Allahyari and KrysKochut. 2016. “Discovering

Coherent Topics with Entity Topic Models. In Web

Intelligence (WI)”, 2016 IEEE/WIC/ACM International

Conference on. IEEE, 26–33.

[6] Mehdi Allahyari and KrysKochut. “Semantic Context-

Aware Recommendation via Topic Models Leveraging

Linked Open Data. In International Conference on Web

Information Systems Engineering. Springer” , 263–277.

2016.

[7] Mehdi Allahyari and KrysKochut. “Semantic Tagging

Using Topic Models Exploiting Wikipedia Category

Network. In Semantic Computing (ICSC)”, 2016.

[8] M. Allahyari, S. Pouriyeh, M. Assefi, S. Safaei, E. D.

Trippe, J. B. Gutierrez, and K. Kochut. 2017. A Brief

Survey of Text Mining: Classification, Clustering and

Extraction Techniques. ArXiv e-prints (2017).

arXiv:1707.02919

[9] Einat Amitay and Cécile Paris..” Automatically

summarising web sites: is there a way around it?.” 2000

[10] Elena Baralis, Luca Cagliero, Saima Jabeen, Alessandro

Fiori, and Sajid Shah.”. Multi-document summarization

based on the Yago ontology. Expert Systems with

Applications” 40, 17 (2013), 6976–6984. 2013

[11] Taylor Berg-Kirkpatrick, Dan Gillick, and Dan Klein. .

“Jointly learning to extract and compress. In Proceedings

of the 49th Annual Meeting of the Association for

Computational Linguistics: Human Language

Technologies-“, 481–490. 2011

[12] David M Blei, Andrew Y Ng, and Michael I Jordan..

“Latent dirichlet allocation. the Journal of machine

Learning research” (2003), 993–1022.

[13] Asli Celikyilmaz and DilekHakkani-Tur.” A hybrid

hierarchical model for multi-document summarization.”

2010

[14] YlliasChali and Shafiq R Joty.. “Improving the

performance of the random walk model for answering

complex questions” 2008.

[15] Olivier Chapelle, Bernhard Schölkopf, Alexander Zien,

and others.“Semi supervised learning. Vol. 2. MIT press

Cambridge” 2006.

[16] Ping Chen and Rakesh Verma. 2006.” A query-based

medical information summarization system using ontology

knowledge” 2006.

[17] Freddy Chong Tat Chua and Sitaram Asur. 2013.

“Automatic Summarization of Events from Social Media”

2008

[18] John M Conroy and Dianne P O’leary.. “Text

summarization via hidden markov models”. In Proceedings

of the 24th annual international ACM SIGIR conference on

Research and development in information retrieval. ACM,

406–407. 2001

.

