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ABSTRACT- To automatically summarize a piece of
material, the length of the original text must be reduced
while the content's important informative parts and
significance are preserved. As a result, automating manual
text summarizing, which is a time-consuming and labor-
intensive procedure, is gaining popularity, and is therefore
a major motivator for academic study. In today's age of
data overload, abstracting and summarizing huge texts is
critical. Over time, a variety of approaches for
summarizing text have been created. Traditional
approaches construct a summary directly as a result of the
duplication and omission of the document summary
connection. Deep learning algorithms have been
demonstrated to be useful in creating summaries. We
concentrate on deep learning-based text summarizing
algorithms that have been developed throughout time.

KEYWORDS- Summarize text, Deep Learning
Techniques, Effective, Automatization

I. INTRODUCTION

To describe a piece of content autonomously, the original
text's length must be decreased while the content's main
informative elements and relevance are kept. As a result,
automating manual text summarization, which is a time-
consuming and labor-intensive technique, is gaining
traction and becoming a significant incentive for academic
study. The volume of text data from various sources has
exploded in the age of big data. These kind of text volumes
are a treasure of information that must be expertly
presented in order to be useful. Humans usually study a
book in its entirety to obtain a complete understanding of
it before creating a summary that emphasizes the most
significant aspects[1]. Because computers lack human
understanding and language ability, summarizing material
is difficult.

Natural language processing techniques may be used to
summarize a piece of text by using algorithms like page
rank algorithms. These algorithms are wonderful for text
summaries, but they can't come up with new terms that
aren't in the document, and they can't catch grammatical
errors. Therefore, we may rely on Deep Learning, a text
summarization model that incorporates new terms. As a

result, we use deep learning algorithms to construct
grammatically and phraseological correct summaries.

A. Deep Learning

Several nonlinear processing units are utilized in a cascade
while performing transformations and feature extractions,
such that the output of one layer is provided as an input to
the next layer. Using a sequence of feature layers, deep
learning algorithms may learn from inputs in both an
unsupervised and supervised manner.[2] The features
layers are not clarified and evolved by humans as a result
of a generalized learning process but are automatically
learned from generalized learning.

In order to construct the summary, text summarizing
methods entail extracting words directly from the textual
content. Eliminating stop words and finding noun groups
are both part of the lemmatization process.[3] Using
traditional methods, on the other hand, has the major
disadvantage of producing a summary that is not accurate.
Given the lack of a record of the keywords chosen before,
it's possible that certain words will occur in the summary
as well as in the main text. Furthermore, the created
summary and the document have a low correlation using
standard methodologies. As a result, the condensed
information makes it more difficult for customers to
comprehend the paper. Deep learning approaches are
utilized for summarization in this way to overcome
difficulties.[4]

B. Need for text summarization

When it comes to text summary, it's important to extract
words directly from a text. Stop words are removed from
noun groups during normalization. To be sure, using
conventional procedures has drawbacks, such as the
inability to develop unique content. Because there is no
record of the keywords that were previously picked, it's
likely that certain terms will appear in both the summary
and the main text. Furthermore, the link between the
summary and the document produced by traditional
methods is relatively weak.[5] Customers will find it more
difficult to comprehend a summarized content as a result.
Therefore, text summarizing is performed automatically.,
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C. Approaches used for automatic text summarization

There are two basic types of NLP strategies for
summarizing text. Each has its own set of drawbacks, such
as the inability to produce new text. Because there is no
record of the keywords that were previously picked, it's
likely that certain terms will appear in both the summary
and the main text.[6] Furthermore, the link between the
summary and the document produced by traditional
methods is relatively weak. Customers will find it more
difficult to comprehend a summarized content as a result.
Therefore, text summarizing is performed
automatically.[7].

D. Approaches used for automatic text summarization:

There are two main types of how to summarize text in
NLP:

e Extractive Summarization

e Abstractive Summarization

e Extractive Text Summarization: Extracting
Extractive text summarizing (ETS) is the process of
extracting key phrases from a source material and
utilizing them in a summary. During the extraction
procedure, the texts are not changed in any manner.
Figure 1 depicts this procedure.[7]

e Abstractive Text Summarization: Sections of the
quality content are paraphrased and condensed as part
of the applied external, as seen in Figure 2. When
employed in deep learning, text summarization
utilizing abstraction helps overcome the grammatical
flaws of the extractive technique. They, like people,
create new phrases and sentences to communicate the
most useful information from the original material.

As a result, abstraction outperforms extraction.

Text

Sentence 1 Summary
Exiractve

Sentence 2 Sentence 2
Summarize:

Sentence 3 Sentence 4

Santence 4

Figure 1: Extractive Summarization

Text

Sentence 1

Abstractive Summary
Sentence 2

Summarizer New Sentences
Sentence 3
Sentence 4

Figure 2: Abstractive Summarization

I1. LITERATURE REVIEW

Automatic summary of legal content is challenging due to
a variety of writing styles and different features of legal

themes included in the text. The writers of Legal Text
Summarization provide a detailed examination of the
approaches used in legal text summarization [4]. An
asymmetric weighted graph, in which sentences are
portrayed as nodes in a graph, to summarize legal
documents. Only sentences with high node values are
chosen for retention in the summary table for the overview.
A document is represented as a collection of phrases that
belong to almost the same linked constituent as a number
of related graphs. This strategy encourages variety and,
therefore, provides a steady flow of information. The
authors utilize both keyword/key phrase matching and
case-based approaches, according [3] to capture
information diversity, discriminant analysis is presented
for multi-document summarization of Arabic text [8].

To cluster court judgments, hierarchical Latent Dirichlet
Allocation (hLDA) might be employed [4]. The similarity
measure between topics and documents is used to run
hLDA and discover the summary of each document using
the same topics. The significance score may be derived by
adding the TF-IDF scores for each word in each sentence
and normalizing by the sentence length, according to [3].
The summarizing task is separated into two parts,
according to [4], segmentation of the document using
artificial potential field to identify rhetorical roles, and
development of a summary from the segments so
discovered.[8]

For text summarization, a variety of models have been
suggested, ranging from simple multi-layer networks to
complex neural network designs [11]. Deep learning
techniques, on the other hand, have rarely been used to
create legal document summaries, as far as we know. We
provide a deep learning-based approach for summarizing
legal documents using computerized sentence labelling.[9]

I11. OBJECTIVES
The main purpose of this project is to:

» Use transfer learning to extract the most important
meaning from text and provide it to the user.

» Use data mining algorithms that can be designed to
read documents and find crucial information.

IV. METHODOLOGY

A. Natural Language Processing

Natural language processing (NLP) is an expert system
(Al) area that helps computers comprehend and analyze
natural language. Natural language processing (NLP) may
be used to organize and rearrange content in order to
complete tasks like localization and summaries, according
to researchers.[10]

1. Components of NLP Five main Component of
Natural Language processing are:

Morphological and Lexical Analysis
Syntactic Analysis

Semantic Analysis

Discourse Integration

Pragmatic Analysis
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Morphological and Lexical Analysis: If you want to learn
more about lexical analysis, you'll discover how to identify
the structure of words by studying, recognizing, and
analyzing them. and it entails breaking down a document
into paragraphs, words, and phrases.[11]

Each word is broken down into its component pieces.
Analytical Semantics: Semantic Analysis is the process of
a syntactic analyzer assigning interpretations to a sentence.
This component, as its name says, turns a sequence of Its
purpose is to show how the words connect to one another.
Syntax analysis: Words are usually considered as the
smallest units of syntax. If you want to learn more about
syntax, it is the set of principles and rules that govern how
sentences are constructed in every language.[12]

Pragmatic Analysis: Prag focuses on the analysis of variety
of communication content, as well as its effect on
interpretation. The process of deriving or abstracting the
meaningful usage of language is referred to as this. As a
consequence of this study, the focus is always on what was
said and how it was communicated.

"Close the window?" for example, should be viewed as a
request rather than a command.

B. Discourse Integration

If you want to know what a single phrase means, you can
look it up on the internet. It also considers the significance
of the following sentence.

In the phrase "He wished that,” for example, "that" is a
function of what has occurred before in the sentence.

V. SIMULATION METHODOLOGY

A. Extractive Approach

Extractive methods identify the most important words
from a list of keywords to summarize publications.

The most important portions of sentences are weighted in
summary sentences. Sentences are rated using a number of
algorithms and methodologies based on their relevance
and similarity. Because this approach cannot produce text
on its own, the outcome will always include a piece of the
original text. There are several approaches for extractive
summarization. Essentially said, we'll utilise unsupervised
learning to find, and rank connected phrases. We won't
have to train and build a model before we can utilise it for
our project this way.

1. Unsupervised approach: The robots are taught to use
data that hasn't been classified or labelled without
supervision. In essence, this means that no training data
may be provided, and the computer is forced to learn

on its own. The computer should not require any prior
knowledge of the data to classify it. The machine must
be programmed for it to learn on its own. The computer
must be able to comprehend and evaluate both
structured and unstructured data. Here's a real-life
example of unsupervised classification:[13]

Python's libraries include a lot of support for natural

language processing. To summarize the subject, the NLTK

(natural language toolkit) will be utilized.

Step 1: Importing the necessary libraries

Creating effective feedback exhibited great will need the
use of two NLTK libraries.

imported stop words from nltk.corpus

import word tokenize, sent tokenize from nltk

The terms used in this article include

:Corpus: Corpus is a term that refers to a collection of
things. Texts, such as poetry by a single poet or an author's
whole body of work, may be utilized as data sets. In this
circumstance, a set of pre-determined stop words will be
utilized.[14]

o Tokenizers: It deconstructs a text into tokens. Word,
phrase, and regex tokenizers are examples of
tokenizers, with the former being the most
common.[15] As a result, we'll only employ the word
and term tokenizers.

Step 2: Stop Words are removed and stored in a separate
array of words.

Stop Words: There are various words in a statement that
aren't essential, such as (is, a, an, the, for). Consider the
following sentence as an illustration.

Jammu and Kashmir, sometimes known as the Crown of
India, is India's northernmost state.

Following the removal of stop words, we may reduce the
number of words while maintaining the meaning as
follows:

:'Jammu’,"and’,'Kashmir','northern’,'most', 'state’,'India’,"als
o0','called’,'crown’,'India’

Step 3: Create a word frequency table.

Figure 3 shows how a python dictionary keeps track of
how many times each word appears after stop words are
deleted.[16] We can run each sentence through the
dictionary to see which sentences contain the most
important information in the overall text.

Step 4: Assign score to each phrase subject to the terms it
includes and the frequency table

To produce the array of phrases displayed in Figure 4, we
may use the sent tokenize () function. Second, we'll need a
lexicon to keep track of the sentences' scores.
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stopWords = ==t (stopwords.words ("english"))
words = word_tokenize (x)
fregTable = dict()

for word in words:
word = word. lower ()
if word in stopWords:
continue
if word in freqTable:
freqTable[word]+= 1
else:
freqTable [word]=1

print (freqTable)

{'jamm': 1, 'kashmir': 3, 'northern': 1, 'state': I, 'india': 3, 'also': 1, 'called': 2, 'crown': 1, '.': 3, 'due: 1, 'n A
atural': 1, 'beauty': 1, 'paradise': 1, 'earth': 1, 'still': 1, 'remains': 1, 'one': 1, 'beautiful': 2, 'tourist': 1, 'des
tination': 1, 'everything': 1, "offer': 1, 'nature-lover': 1, 'snow': 1, 'capped': 1, 'mountains': 1, 'lakes': I, 'lush':

1, 'green': 1, 'gardens': 1, 'throughout': 1, 'year': 1, 'locks': I, 'impressive': 1) V

Figure 3: Creating a Frequency Table

=entences = sent_ tokenize (x)
sen = dict ()

1
for sentence in sentences:
for word , freq in fregTable.items=():
if word in sentence.lower():
if sentence in sen:
sen[sentence] += freq
else:
sen[sentence] = freg
print](sen)

{"Janmu and Rashmir is the northern most state of India and is also called as crown of India.': 20, '"Due to the natural be A
auty kashmir iz called as the paradise on earth .': 17, 'Kashmir still remaing the one of the beautiful tourist destinati

v
on in India.': 20, 'Fashmir has everything to offer to a nature-lover from snow capped mountaing to lakes and lush green g
ardens .': 20, 'Fashmir throughout the year looks beautiful and impressive.': 1g} v
Figure 4: Assign scores to sentences
Step 5: To compare the sentences in the feedback, provide As illustrated in Figure 6, apply the threshold value and
a score. store phrases in order in the summary.[18]

Finding the average score of a phrase, as shown in Figure
5, is a straightforward way to compare our scores. The
average can be a useful criterion in and of itself.

sum = 0

for sentence in sen:
sum += sen[sentence]

print (sum)

print(len(sen))

93

average = int(sum / len(sen))
rint (average)

18

Figure 5: Assign Scores to compare the sentences
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summary = "'
for sentence in sentences:

if (sen[sentence] > average):
summary+= " " + sentence

print ("ORIGINAL TEXT :" + x)

ORIGINAL TEXT :Janmu and Rashmir is the northern most state of India and is also called as crown of India. Due to the natu '
ral beauty kashmir iz called as the paradize on earth ., Fashmir still remains the one of the beautiful tourist destinatio

n in India. Kashmir has everything to offer to a nature-lover from snow capped mountains to lakes and lush green gardens .

Fashmir throughout the year looks beautiful and impressive,

print ("SUMMARY : " + summary)

v
v

SUMMARY : Jammu and Fashmir is the northern most state of India and is also called as crown of India. Kashmir still remai "
ns the one of the beautiful tourist destination in India. Rashmir has everything te offer to a nature-lover from snow capp

ed mountains to lakes and lush green gar-dens .

Figure 6: Storing the sentences

B. Abstractive Summarization

We produce new terms from the original information. This
contrasts with the extractive strategy, in which we only
used the sentences that were already in the database.
Certain sentences may be missing from the original text
because of the abstractive summarizing procedure.

Before we go into the implementation, let's go through the
principles that are required to develop a Text Summarizer
model.

1. Recurrent Neural Network: The term "recurrent
neural networks" refers to a type of neural network.
RNNs that are very good at modelling genetic
sequences, such as time series. This layout is based on
the sequential information concept. Many the most
frequently occurring words are sent into the RNN
network. The computer searches the data for words
that appear often in order to predict the following
word in a sentence. As a result, do you realize how
critical the RNN is in our daily lives? Among reality,
it has bred laziness in us [17]. Figures 7 and 8
demonstrate the RNN's fundamental structure as well
as a visual depicting the RNN's basic equations.

D
3

Figure 6: Basic Architecture of RNN
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We can pracess @ sequence af veclors x by

apalying i recurrence formula 2 every lime step ¥
el = fw (Pe—1,|e) “
new state old state input vector at
some time step
some function .

with parameters W
Figure 7: Basic Equations of RNN

2. Types of RNN architectures: — RNN architectures at
a basic level

One-on-one:- When dealing with simple machine learning
difficulties, this method is often known as a vanilla neural
network. It features a single input and many outputs.
Application: used in picture captioning, such as the dog
catching the ball in the air we saw before.

— From many to one: It has a lot of inputs and just one
output. This is mostly utilized in sentiment analysis, where
we provide a statement as an input and receive sentiment
about it as an output.

— Many to Many—It accepts a set of inputs and produces
a set of outputs. Machine Translation (Application)

Issues while training a RNN: —

e Vanishing Gradient Problem

e Exploding Gradient Problem

Gradients return to the initial layer as a deep neural
network is trained. The gradients must flow via a
continuous matrix multiplication because of the chain rule.
If their values are little, they will quickly dwindle to the
point where they will vanish (1). The vanishing gradient
problem is the name for this phenomenon. As a result, over
time, data got lost. When inclinations have large values
(>1), this is known as the growing gradient issue.

e Issues due to these problems:

Long training time

Poor Performance

Bad Accuracy
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C. Introduction to Sequence-to-Sequence (Seg2Seq)
Modeling

We may use the Seq2Seq paradigm to analyse and solve
any problem involving sequential data. Sentiment
classification, Neural Phonetic Transcription, and Named
Entity Recognizing are some of the most common
applications of sequential data.

Machine Translation takes a text in one language and
produces a text in that other.

| love playing sports —> Me encanta hacer deporte

A set of words is sent into Named Entity Recognition,
which produces a list of tags for each of the words in the
succession.

Andrew ng founded coursera —> B-PER, I-PER, O, O

Our objective is to develop a text summarizer that takes a
big list of words (from a text body) as input and produces
a concise summary of the content (which is a sequence as
well). We may represent the problem as a Seq2Seq issue
with many-to-many components. Consider the following
Seq2Seq model design as an example:
A Seq2Seq model is made up of two major parts.:

e Encoder

e Decoder.

Understanding the Architecture of Encoders and Decoders
Encoder-decoder architecture is used to solve the Seq2Seq
problem.

Let's take a look at it from a textual aspect to better
understand it. You offer a large string of words as an input,
and you provide a condensed version of the original signal
as an output.[3]

The encoder-decoder can be set up in two stages:

e  Training phase

e Inference phase

1. Training phase: We'll move on to the training phase
about the after building up the coder and receiver. In
this step, we'll train our data to simulate the
complementary strand with a the setup of the encoder
and decoder will be described in depth.[11]

Encoder An Encoder Long Short-Term Memory Model
feeds one word into the encoder at each timestep (LSTM).
Each timestep is analyzed, and the input sequence's
environmental data is recorded. Figure 9 demonstrates this.
The hidden state (hi) and cell state (ci) of the previous time
step are used to initialize the decoder. This is because the
encoder and decoder are two independent components of
the LSM design.

Decoder The decoder, like the encoder, is an LSTM
network that reads the whole object of the class work and
expects so same sequence, but the code is trained to
forecast the next word using the prior word as a cue. Figure
10 depicts the basic construction of a decoder.

\FN v TV ST pal sty

Figure 8: Basic Structure of Encoder

’ yi | (¥ | | end |
intial state s the fral] |+ =5 ot
nitial state is the fina
state of encoder ’ LSTM LSTM LSTM
r o | B = ] r ]
| start | 2 L Y2 |

Figure 9: Basic structure of Decoder

Special tokens called <start> and <finish> must be
attached to the target DNA in order to decode it. The
promoter region is unknown during decoding the test
sequence. The decoder is given the first word, which is
always <start>, to predict the target sequence. It's also
worth remembering that end> denotes the statement's end.

2. Inference Phase: After training, the model is put to
the test on new source sequencing with unknown
target sequences. To decode an iteration process, we
must first build up the inference architecture.:

D. Working of Inference

The steps to decoding the measurements in order are as
follows:

» Encrypt the whole input stream first, then utilize the
encoded data to initialize the decoder.

« The <start> token should be passed to Decoding as an
input.

» Then, for a single timestep, execute the decoder.

» The probability of the next word being returned. The
phrase that is most likely to be picked will be
chosen.[9]

* In the next timestep, provide the sampled word to the
decoder and adjust the internal states with the current
linear interpolation. 6.

« Tokenize the target sequence by repeating the test 3-5
until an end> token is formed, or the target sequence is
reached.

As an example, consider the test sequence [x1, x2, X3, x4].

How will the inference method work for this test

sequence?

» Create internal state arrays from the test sequence.

» At each keyframe, see how the parser forecasts the
target sequence:
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Figure:12 timestep t=3

VI. RESULTS

We've finally arrived to the stage when, in order to create

S0.Cn=51.C4
;’ LSTM
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Figure: 11 Timestep t=2
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the model, we'll need to become acquainted with a few
terminology.

Return Sequences = True: When this option is selected,
LSTM creates hidden and cell states for each timestep.
Return State = True: When return state = True, LSTM
creates just the prior timestep's covert data and cell
state, as the name implies.

Initial State: Sets the LSTM's emotions and opinions
for the first timestep.

Layered LSTM: This sort of LSTM consists of many
layers stacked on top of each other. As a result, the
sequence is more accurately shown. It's an excellent
technique to learn to stack a bunch of LSTMs on top of
each other.

Figure 14 shows how a three-stacked LSTM generator
is built, and Figure 15 shows the encoder's output.:
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Figure 13: Three stack LSTM for encoder
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Figure 14: Output for 2 stack LSM for encoder

Sparse categorizing cross-entropy is the loss function, Output:
which turns an integer string into a one-hot vector on the
fly. This takes care of any memory issues. .

model. Compile (optimizer="rmsprop’,
loss='sparse_categorical_crossentropy")
Based on a user-specified measure, it decides when to
cease training the neural network. The validity loss is
something we're keeping an eye on (if it becomes too high,

\ = ftrain
test
30 \
28

« N\

24
our model will cease training).: \\
22 .
es = Early Stopping (monitor="val_loss', mode="min’, \\\
verbose=1) 20 S9N
We'll test the model on the holdout set after training it with 18 S
512 batches (which makes up 10 percent of our dataset): 16 L , . y - \
0 2 - 6 8 10

y tr.rreshape(y tr.shape[0],y tr.shape[l], 1)[:,1:]
history=model fit([x tr,y tr[:;:-1]], y tr.reshape(y
tr.shape[0],y tr.shape[1], H:1]
,epochs=50,callbacks=[es],batch size=512,
validation data=,epochs=50,callbacks=[es],batch
size=512, validation data= 'y val.reshape(y
val.shape[0],y val.shape[1], 1)[:,1:] ([x val,y val[:,:-
1]), y val.reshape(y val.shape[0],y val.shape[1],
DELD)
A. Understanding the Diagnostic plot

Now we'll make a few diagnostic graphs to see how the
model behaves over time.:

from matplotlib import pyplot
pyplot.plot(history.history['loss], label="train")
pyplot.plot(history.history['val_lossT, label="test")

pyplot.legend() pyplot.show()

Figure 15: Output of Cross Entropy

We may conclude that the prediction error has grown
somewhat after epoch 10. As a result, after this epoch, we
will no longer train the model.

Let's now create a dictionary to translate the index to words
for both the target and source vocabulary:

reverse_target_word_index=y_tokenizer.index_word
reverse_source_word_index=x_tokenizer.index_word
target_word_index=y_tokenizer.word_index

B. Inference
The various steps involved are

Step 1: Set up the inference for the encoder and decoder
as shown in Figure 17
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Figure 16: Inference setup for Encoder and Decoder

Step 2 Figure 18 illustrates how this function conducts the
inference technique.
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Figure 17: The interference procedure implementation
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Step 3 As illustrated in Figure 19, we now construct the
routines to transform a numeric sequence to a word
sequence for the summary and reviews.
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Figure 18: Defining functions and converting into a word sequence

Step 4 A few summaries generated by the model are
shown in Figure 20.:

Review: used eating flaxseed brownie hodgson mill brownies super easy make taste great sinmce like dark chocolate usually add littl
e cocoa

Original summary: delicious brownie

Predicted summary: best brownie mix

Review: favorite coffee keurig coffeemaker convenient get amazon cheaper running around stores trying find lowest price

Original summary: great coffee
Predicted summary: great coffee

Review: mallomars pure chocolate cookies delicious tasty chocolate inside equally tasty cream filling inside pour ice cold glass mi
1k sit back try eat whole box one sitting brian fairbanks

Original summary: delicious

Predicted summary: best chocolate have ever tasted

Review: organic usually prefer whatever blech cannot stand taste ended giving away going try another bag mention calories either be
ars calories take haribo please

Original summary: taste terrible

Predicted summary: not that great

Review: package six boxes forty eight bags per box listed area large tea bags suitable making gallon time tea fact small single use
bags box web page says family size bags nothing family sized single use bags bad advertisement buy read misleading ads carefully ho
pe company business

Original summary: misleading advertisement

Predicted summary: not as advertised

Review: red wine tart unpleasant way comes cans two servings per since carbonated either drink whole extended period save hope flat
share drink fairly quickly like normal soda get lot caffeine sugar pretty short time drinks like come smaller cans good perk right
point give jitters like drinks tend drank full two servings make heart anything drink several cups coffee day occasionally drink en
ergy drinks like well despite caffeine intake caffeinated soda like diet coke still keep night notably drink keep

Original summary: not bad has some ups and downs

Predicted summary: not as good as it is

Figure 19: Examples of the Output Summaries
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VIl. CONCLUSION

Despite the fact that our model's summary and the real one
are not the same length, they both communicate the same
idea. My model can provide a comprehensible summary of
the information using context from the text.

This is how deep learning methods in Python may be used
to summarize text.

(1]

(2]

(3]

(4]

(5]

Build the model by expanding the training dataset. As
the amount of the training dataset expands, a deep
learning model's ability to generalize improves.

Use a Bi-Directional LSTM to capture information
from both directions and generate a better context
vector.

Use the beam search strategy to decode the test
sequence instead of the greedy method (argmax)
assess your effectiveness of the algorithm using the
BLEU score.

Set up pointer-generating networks and techniques of
inclusion.
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