Nature Of The Diophantine Equation ���� + ������ = ����
DOI:
https://doi.org/10.55524/Keywords:
Exponential Diophantine Equation, Quadratic CongruenceAbstract
In this work, we discuss that the Diophantine equation 4�� +12�� = ��2has no non-negative integer solution where x, y and z are non-negative integers.
Downloads
References
P. Mihailescu, Primary cycolotomic units and a proof of Catalan’s conjec-ture, J. Reine ngew. math., 27 (2004), 167−195 [2] J. F. T. Rabago, On an open problem by B. Sroysang, Konuralp J. Math., 1 (2013), 30−32.
J. F. T. Rabago, On two Diophantine equations 3x + 19y = z2and 3x + 91y = z2, Int. J. Math. Sci. Comp., 3 (2013), 28−29. [4] B. Sroysang, More on the Diophantine equation 2x + 3y = z2, Int. J. Pure Appl. Math., 84 (2013), 133−137.
D. Acu, On a Diophantine equation 2x+ 5y= z2, Gen. Math., 15 (2007), 145−148.
S. Chotchaisthit, On the Diophantine equation 4x + py = z2 where p is a prime number, Amer. J. Math. Sci., 1 (2012), 191−193. [7] S. Chotchaisthit, On the Diophantine equation px + (p + 1)y = z2 where p is a Mersenne prime, Int. J. Pure Appl. Math., 88 (2013), 169−172.
P. Mihailescu, Primary cycolotomic units and a proof of Catalan’s conjecture, J. Reine Angew. Math., 27 (2004), 167−195.
B. Sroysang, More on the Diophantine equation 2x + 19y = z2, Int. J. Pure Appl. Math., 88 (2013), 157−160.
B. Sroysang, On the Diophantine equation 5x + 7y = z2, Int. J. Pure Appl. Math., 89 (2013), 115−118.
B. Sroysang, On the Diophantine equation 3x + 17y = z2, Int. J. Pure Appl. Math., 89 (2013), 111−114.
B. Sroysang, On the Diophantine equation 3x + 5y = z2, Int. J. Pure Appl. Math., 81 (2012), 605−608.
B. Sroysang, More on the Diophantine equation 2x + 37y = z2, Int. J. Pure Appl. Math., 89 (2013), 275−278.
S. Chotchaisthit, On the Diophantine equation 4x+py=z2p is a prime number Amer. J. Math. Sci., 1 (2012), 191−193 [15)A. Suvarnamani, A. Singta, S. Chotchaisthit, On two Diophantine equation 4x+7y=z2and 4x+11y=z2Sci. Technol. RMUTT J., 1 (2011),25-28