HSV Values and OpenCV for Object Tracking

Authors

  • Mir Mahpara Gulzar M.Tech, Electronics and Communication Engineering, RIMT University, Punjab, India Author
  • Ravinder Pal Singh Technical Head, Department of Research, Innovations and Incubation, RIMT University, Punjab, India Author
  • Monika Mehra Head of Department, Electronics and Communication Engineering, RIMT University, Punjab, India Author

DOI:

https://doi.org/10.55524/

Keywords:

HSV, OpenCV, Object tracking, Video frames, GUI

Abstract

This research shows how colour and  motion may be utilised to speed up the surveillance of  things. Video tracing is a technique for detecting a huge  vehicle over a long distance using a camera. The main goal  of video tracking is to link objects in subsequent video  frames. When objects move faster than the frames per  second, maintaining connection might be difficult. Using  Hue saturation space values and OpenCV in separate video  frames, this article shows how to follow moving objects in  real-time. We begin by finding the HSV value of the object  to be tested, and then we understand the steps along. The  tracking of the items was shown to be 90 percent accurate. 

Downloads

Download data is not yet available.

References

Aggarwal, A., Biswas, S., Singh, S., Sural, S. & Majumdar, A.K., 2006. Object Tracking Using Background Subtraction and Motion Estimation in MPEG Videos, in 7th Asian Conference on Computer Vision. SpringerVerlag Berlin Heidelberg, pp. 121–130. doi:10.1007/11612704_13

Aldhaheri, A.R. & Edirisinghe, E.A., 2014. Detection and Classification of a Moving Object in a Video Stream, in: Proc. of the Intl. Conf. on Advances in Computing and Information Technology. Institute of Research Engineers and Doctors, Saudi Arabia, pp. 105–111. doi:10.3850/ 978-981- 07-8859-9_23 760 Mukesh Tiwari and Dr. Rakesh Singhai

Ali, S.S. & Zafar, M.F., 2009. A robust adaptive method for detection and tracking of moving objects, in: 2009

International Conference on Emerging Technologies. IEEE, pp. 262–266. doi:10.1109/ICET.2009.5353164

Amandeep, Goyal, M., 2015. Review: Moving Object Detection Techniques. Int. J. Comput. Sci. Mob. Comput. 4, 345 – 349.

Athanesious, J. & Suresh, P., 2012. Systematic Survey on Object Tracking Methods in Video. Int. J. Adv. Res. Comput. Eng. Technol. 1, 242–247.

Avidan, S., 2004. Support vector is tracking. IEEE Trans. Pattern Anal. Mach. Intell. 26, 1064–1072. doi:10.1109/TPAMI.2004.53

Badrinarayanan, V., Perez, P., Le Clerc, F. & Oisel, L., 2007. Probabilistic Color and Adaptive Multi-Feature Tracking with Dynamically Switched Priority Between Cues, in: 2007 IEEE 11th International Conference on Computer Vision. IEEE, pp. 1–8. doi:10.1109/ICCV.2007.4408955

Bagherpour, P., Cheraghi, S.A. & Bin Mohd Mokji, M., 2012. Upper body tracking using KLT and Kalman filter. Procedia Comput. Sci. 13, 185–191. doi:10.1016/j.procs.2012.09.127

Balasubramanian, A., Kamate, S., & Yilmazer, N., 2014. Utilization of robust video processing techniques to aid efficient object detection and tracking. Procedia Comput. Sci. 36, 579–586. doi:10.1016/j.procs.2014.09.057

Ben Ayed, A., Ben Halima, M., & Alimi, A.M., 2015. MapReduce-based text detection in big data natural scene videos. Procedia Comput. Sci. 53, 216– 223. doi:10.1016/j.procs.2015.07.297

Blackman, S.S., 2004. Multiple hypotheses tracking for multiple target tracking. IEEE Aerosp. Electron. Syst. Mag. 19, 5–18. doi:10.1109/MAES.2004.1263228

Chakravarthy, S., Aved, A., Shirvani, S., Annappa, M., & Blasch, E., 2015. Adapting Stream Processing Framework for Video Analysis. Procedia Comput. Sci. 51, 2648–2657. doi:10.1016/j.procs.2015.05.372

Chandrajit, M., Girisha, R., & Vasudev, T., 2016. Multiple Objects Tracking in Surveillance Video Using Color and Hu Moments. Signal Image Process. An Int. J. 7, 15–27. doi:10.5121/sipij.2016.7302

Chate, M., Amudha, S., & Gohokar, V., 2012. Object Detection and tracking in Video Sequences. ACEEE Int. J. Signal Image Process. 3.

L. Bottou, "Large-scale machine learning with stochastic gradient de-scent," in Proceedings of COMPSTAT'2010. Springer, 2010, pp 177-186

L. Perez and J. Wang, "The effectiveness of data augmentation in image classification using deeplearning," arXiv preprint arXiv:1712.04621, 2017.

R. U. Islam, M. S. Hossain, and K. Andersson. "A novel anomalv detection algorithm for sensor data under uncertainty," Soft Computing, vol. 22, no. 5, pp. 1623-1639, 2018.

M. S. Hossain, S. Rahaman, A.-L. Kor, K. Andersson, and C. Pattinson. "A belief rule based expert system for datacenter pue prediction under uncertainty," IEEE Transactions on Sustainable Computing, vol. 2 no. 2. pp. 140-153, 2017.

M. S. Hossain, F. Ahmed, K. Andersson et al., "A belief rule Based expert system to assess tuberculosis under uncertainty," Journal of medical systems, vol. 41, no. 3, p. 43, 2017.

M. S. Hossain, P.-O. Zander, M. S. Kamal, and L. Chowdhury, "Belief- rule-based expert systems for evaluation of -government: a case study," Expert Systems, vol. 32, no. 5, pp. 563-577, 2015.

R.Ul Islam, K. Anderson, and M. S. Hossain, "A web based Belief rule based expert system to predict flood," in Proceedings of the 17th International conference on

information integration and web-based applications & services. ACM, 2015, p.

Published

2022-01-30

How to Cite

HSV Values and OpenCV for Object Tracking . (2022). International Journal of Innovative Research in Computer Science & Technology, 10(1), 43–48. https://doi.org/10.55524/